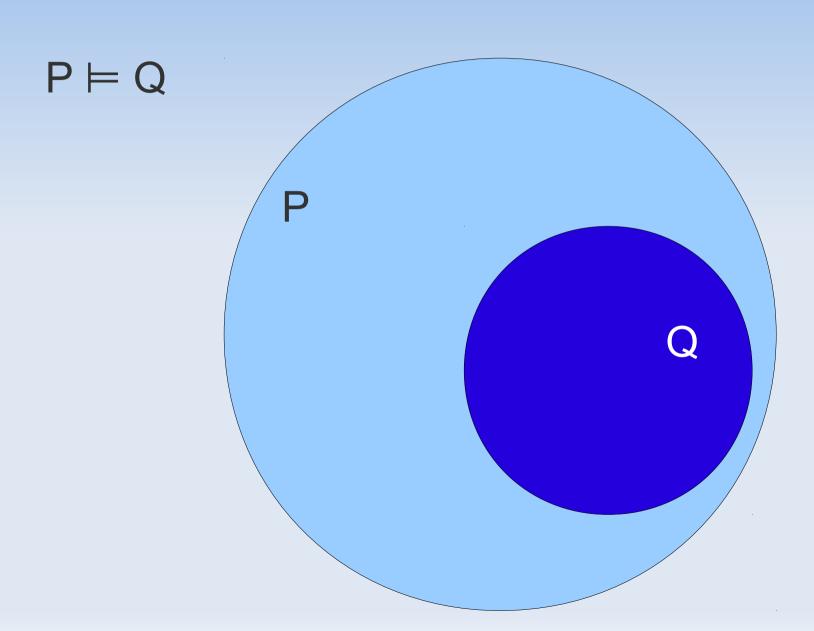
Semestre 2011-2

"Está lloviendo."


- En dos palabras:
 - Todos los estados en los que ha y puede llover.
- En vez de considerar todos los estados posibles, trabajamos con la descripción de un "conjunto de estados".
 - Abstracción de abstracción.
- Es un lenguaje en sí mismo.

- Cada lógica es un lenguaje formal.
 - Alfabeto.
 - Sintáxis (gramática) => formar enunciados.
 - Semántica => significado a los enunciados.
- Lógica proposicional:
 - Significados posibles: true y false.

Pero Antes...

Modelos:

- x+y=4
- true cuando (x=1,y=3),(x=-2,y=4),(x=2,y=2)
- false cuando (x=2,y=-2),(x=1,y=7),(x=8,y=0)
- Vinculación:
 - P ⊨ Q
- Q es verdadero en todos los modelos en los que P es verdadero.
- Los modelos que hacen true a Q están contenidos en el conjunto de modelos que hacen true a P.

- Vinculación se utiliza para derivar conclusiones (inferencia lógica).
- Ejemplo del Mundo del Wumpus.
 - El agente se pone en un laberinto, que se divide en secciones.
 - Hay un Wumpus, monstruo apestoso.
 - Abismos (PITs) con corrientes de viento.
 - El agente tiene una flecha para matar al Wumpus.

	1	2	3	4
4	Stench	GOLD	Breeze	PIT
3	WUMPUS	Breeze	PIT	Breeze
2	Stench		Breeze	
1	*Start*	Breeze	PIT	Breeze

	1	2	3	4
4	Stench	GOLD	Breeze	PIT
3	WUMPUS	Breeze	PIT	Breeze
2	Stench		Breeze	
1	*Start*	Breeze	PIT	Breeze

Cuadros (1,2) y (2,1) están OK.

	1	2	3	4
4	Stench	GOLD	Breeze	PIT
3	WUMPUS	Breeze	PIT	Breeze
2	Stench		Breeze	
1	Start	*Breeze*	PIT	Breeze

	1	2	3	4
	Stench	GOLD	Breeze	PIT
1	NUMPUS	Breeze	PIT	Breeze
	Stench		Breeze	
	Start	*Breeze*	PIT	Breeze

Cuadros (2,2) y (1,3) están en duda.

- KB es el conjunto de modelos obtenidos con el conocimiento de las reglas y de lo observado, que dan un significado de true (conocimiento presente, o Knowledge-Base).
- Modelos posibles de KB:
 - (1,1) (1,2) y (2,1) Ok.
 - (2,2) OK. (1,3) PIT.
 - (2,2) PIT. (1,3) OK.
 - (2,2) PIT. (1,3) PIT.

- P = "No hay PIT en (1,2)."
 - (1,1) (1,2) y (2,1) Ok.
 - (2,2) OK. (1,3) PIT. P = true
 - (2,2) PIT. (1,3) OK. P = true
 - (2,2) PIT. (1,3) PIT. P = true
- Por lo tanto, KB ⊨ P

- Q = "No hay PIT en (2,2)."
 - (1,1) (1,2) y (2,1) Ok.
 - (2,2) OK. (1,3) PIT. Q = true
 - (2,2) PIT. (1,3) OK. Q = false
 - (2,2) PIT. (1,3) PIT. Q = false
- Por lo tanto, KB ⊭ Q

Inferencia

- Derivar conclusiones ("nueva" información) a partir del conocimiento presente.
 - O, saber si un enunciado nuevo (no presente en KB) P se puede vincular con KB.
- Denotación:
 - KB ⊢ P donde i es el algoritmo utilizado.
 - Dicho: P es derivado de KB por medio de i
- Algoritmo utilizado: verificación de modelos.

Inferencia

- Un algoritmo que sólo deriva enunciados vinculados del conocimiento presente se dice que "preserva la verdad" o que es sensato ('sound', en inglés).
 - No se inventa cosas.
- Un algoritmo que deriva todos los enunciados vinculados posibles se dice que es completo.

Lógica Proposicional

- También conocida como Booleana.
- La semántica más simple.
 - Significados posibles: true y false.
- De ésta, se puede extender a otras lógicas:
 - Lógica de Primer Orden
- Sirve como "introducción".

Sintaxis

- Define el alfabeto y una gramática con la que podemos deducir si un enunciado es:
 - Bien formado.
 - Mal formado.
- Sintaxis de una ecuación matemática:
 - x+y=4 bien formado
 - x4y=+ mal formado

Sintaxis de Lógica Proposicional

- Bien formados:
 - True
 - False
 - P
 - Q
 - ¬P
 - PAQ

- Proposición
 - Constante
 - Constante
 - Simbólica
 - Simbólica
 - Compleja
 - Compleja

Atómicas

Sintaxis de Lógica Proposicional

- Conectores lógicos:

 - ¬
 - _ /
 - V
 - ⇒
 - ⇔

 - =

- En orden de precedencia
 - Negación
 - And
 - Or
 - Implicación
 - Bicondicional

 - Equivalencia
 - (No es un conector lógico en sí)

Equivalencia

- P ≡ Q significa "logicamente equivalentes).
- Se cumple si P y Q terminan siendo true con el mismo conjunto de modelos.
- En varios textos, lo equiparan con bidireccionalidad: ⇔
- O con bi-vinculación:
 - $P \equiv Q$, si $P \models Q$ y $Q \models P$

Negación, And, y Or Bien Formados

- And, Or
 - P \(\text{Q} \)
 - Q v P
- Negación
 - ¬P
 - ¬Q

Implicación y Bicondicional Bien Formados

- Implicación (o condicional, o regla).
 - $P \land Q \Rightarrow Q \lor P$
 - P ∧ Q es la premisa
 - Q v P es la conclusión
- Bicondicional (si, y sólo si)
 - ¬P ⇔ Q v P

Semántica

P	Q	٦P	PΛQ	PVQ	P ⇒ Q	P⇔Q
FALSE	FALSE	TRUE	FALSE	FALSE	TRUE	TRUE
FALSE	TRUE	TRUE	FALSE	TRUE	TRUE	FALSE
TRUE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE
TRUE	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE

Tabla de Verdad

Implicación

- No hay una relación de consecuencia entre premisa y conclusión.
- Se describe como:
 - Si P es true, entonces puedo decir que Q es true; si no, no puedo decir nada.
 - Por lo que si P es falso, P ⇒ Q es verdadero.
- Es más intuitivo considerarlo como:
 - $P \Rightarrow Q \equiv \neg P \lor Q$

Equivalencias Lógicas

- $P \land Q \equiv Q \land P$ [conmutatividad]
- $PVQ \equiv QVP$
- $(P \land Q) \land R \equiv P \land (Q \land R)$ [associatividad]
- $(P \vee Q) \vee R \equiv P \vee (Q \vee R)$
- $\neg(\neg P)$ ≡ P [negación de negación]
- $P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$
- $P V (Q \Lambda R) \equiv (P V Q) \Lambda (P V R)$

Equivalencias Lógicas

- $P \Rightarrow Q \equiv \neg Q \Rightarrow \neg P$
- P ⇒ Q ≡ ¬P v Q [elim. implicación]
- P \Leftrightarrow Q ≡ (P \Rightarrow Q) \land (Q \Rightarrow P) [elim. bidirec.] (¬P v Q) \land (P v ¬Q)
- ¬(P ∧ Q) ≡ ¬P ∨ ¬Q [de Morgan]
- ¬(P ∨ Q) ≡ ¬P ∧ ¬Q

Validez

- Cuando un enunciado es siempre true para todo modelo.
 - true
 - ¬false
 - P v ¬P
- ¿Para qué? Teorema de Deducción.
 - Para cualquier enunciado P y Q, P ⊨ Q si y solo si el enunciado (P ⇒ Q) es válido.

Teorema de Deducción (En Español)

- Si tenemos una forma de deducir que un enunciado es válido, también podemos deducir si un enunciado es vinculado a otro.
- Dícese, si la validez de un enunciado requiere la validez de otro.
- Esto está relacionado con técnicas de comprobación ('proof', en inglés), que básicamente son técnicas para probar la validez de un enunciado.

Satisfactibilidad

- Cuando un enunciado es true con tan siquiera un modelo.
 - Se dice que el modelo m satisface al enunciado P.

No Satisfactibilidad

- Que un enunciado sea no satisfactible, significa que no hay un modelo que lo haga true.
- O, lo inverso de válido: es siempre false para todo modelo.
 - P es válido ⇔ ¬P es no satisfactible.
- Por lo tanto:
 - P ⊨ Q ⇔ (P ∧ ¬Q) es no satisfactible
 - Reductio ad absurdum
 - Prueba por refutación o por contradicción
 - Asume Q como false, y encuentra contradicciones en axiomas conocidos como true en P.

Satisfactibilidad

- ¿Es satisfactible? ¿Es válido?
 - Q ∧ ¬Q
 - P \(\text{Q} \)
 - $P \lor Q \lor (P \Rightarrow Q)$
 - $P \Rightarrow Q \Rightarrow (\neg Q \Rightarrow \neg P)$ [contra-positivo]
 - ¬(¬P ∨ Q) ∧ (¬Q)
 - (R ∨ P) ∧ ¬(R ∨ Q) ∧ (¬P ∧ Q)

Satisfactibilidad

¿Es satisfactible?

•
$$p_1 \wedge (p_1 \vee p_2) \wedge (p_1 \Rightarrow p_3) \wedge (p_1 \wedge p_3 \Rightarrow p_4)$$

• $\wedge (p_5 \vee p_6) \wedge (p_5 \Rightarrow p_7) \wedge (\neg p_5 \vee p_8) \wedge (\neg p_7 \vee \neg p_8)$

¿Cómo lo Resolverían Eficientemente?

Siguiente Clase

- Repaso de sección 7.5:
 - Patrones de Razonamiento en Lógica Proposicional
- Enfoque mayor en 7.6:
 - Inferencia Proposicional Efectiva