CONVERGENCIA Y CLASIFICACIÓN DE ALGORITMOS DE OPTIMIZACIÓN

Semestre 2011-2

CONVERGENCIA

- · Definición errónea común:
 - · "Cuando se llega al óptimo global."
 - · "Cuando se llega a un mínimo/máximo."

DISCLAIMER:

LO SIGUIENTE ES LO QUE NORMALMENTE SE EXPONE EN MATERIA DE CONVERGENCIA

CONVERGENCIA

- Según Bonnans et. al.
 - · "Cuando se llega a lo deseado."

LO DESEADO

- · Lo que satisface las condiciones de optimalidad.
 - Depende de la función a optimizar y del algoritmo empleado.

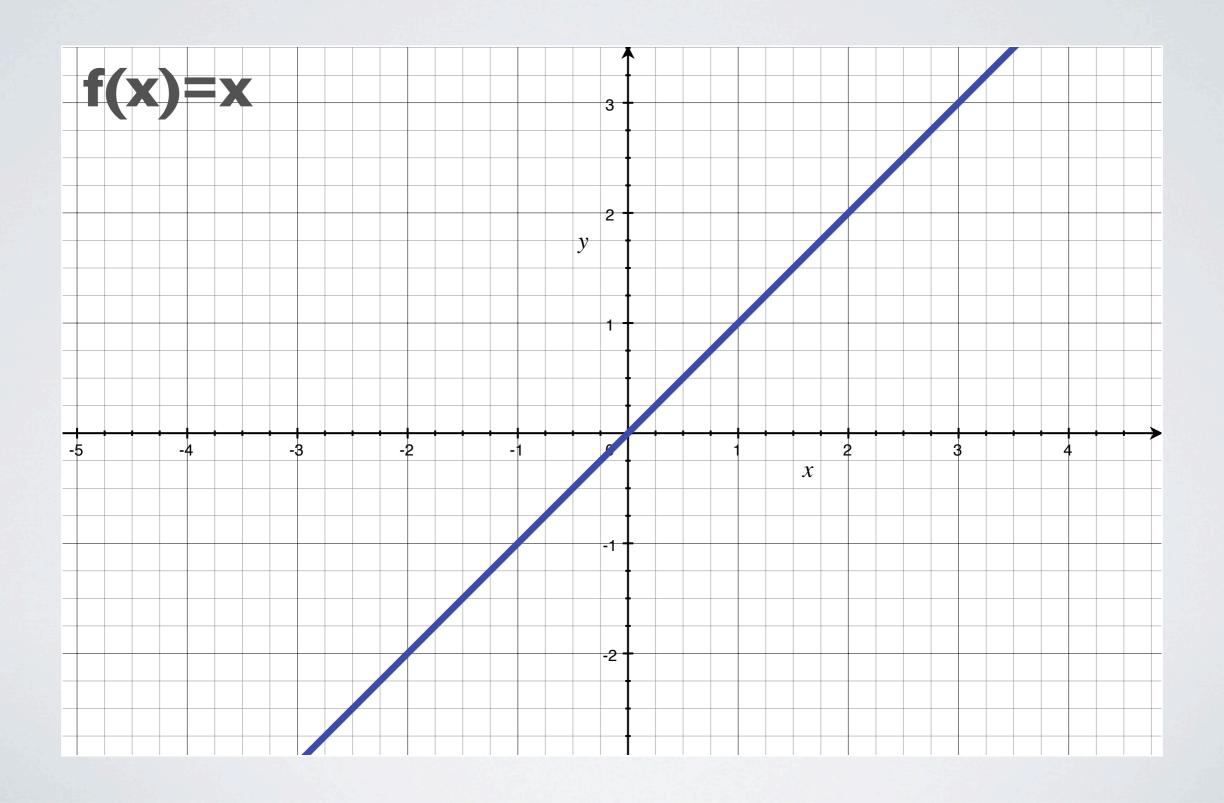
CONDICIONES DE OPTIMALIDAD

- · Para una función continua derivable, si:
 - $\nabla f(x) = 0$ [requisito mínimo]
 - · El algoritmo ha convergido globalmente en x.

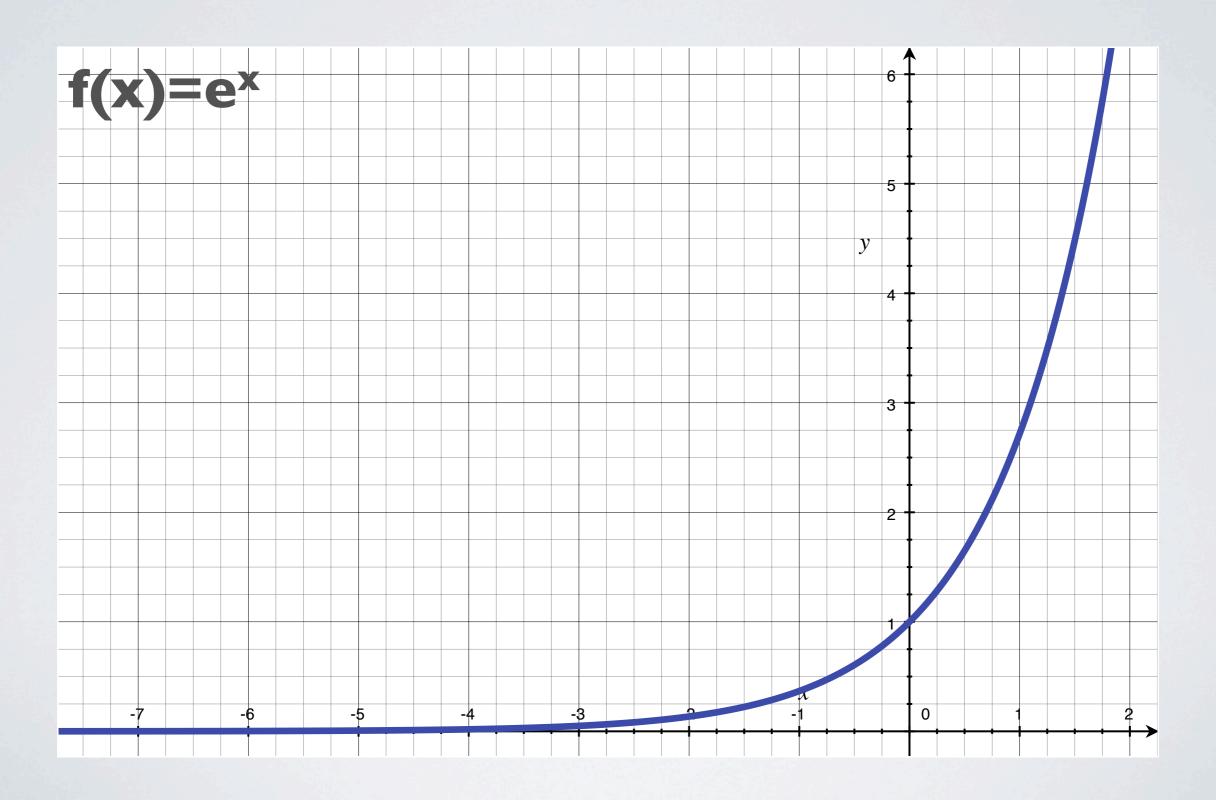
¿PUEDE CONVERGER?

- · Boundedness.
- Si f(x), para toda x, está en un rango menor a (-∞,∞), es decir, si existe lim_{inf}(f(x)) y/o lim_{sup}(f(x)):
 - Existe por lo menos *una* secuencia de x_k 's que arriben a una x^* tal que $\nabla f(x^*) = 0$.
- · Por ende, sí.

¿CUÁNDO NO?



¿Y AHORA?



GENERALIDADES DE CONVERGENCIA

- Habiendo asegurado la convergencia global de la optimización de f, lo siguiente a resolver es:
 - · ¿Cuán tan rápido lo hace? (# de iteraciones)
 - · ¿Cuáles valores de los parámetros del algoritmo maximiza la velocidad de convergencia?
- · Un problema de optimización en sí mismo.

ACLARACIÓN

- Converger ≠ Óptimizar
 - Excepción: $\nabla f(x) = 0$ es una condición suficiente para un mínimo global sólo si f es convexa. [Bonnans et. al.]
- Ejemplo: casos en los que NO conocemos las "entrañas" de f.

FIN A LO NORMALMENTE EXPUESTO EN MATERIA DE CONVERGENCIA

CONVERGENCIA IGNORADA

- Tratar a la convergencia así es resultado de una manera de trabajar poco pragmática hacia el problema de optimización.
- Por ejemplo...

CLASIFICACIÓN DE PROBLEMAS [BONNANS ET. AL.]

- I. Sin Restricciones
 - I.I.Cuadráticos (Menos difícil)
 - 1.2.No Lineales
- 2. Con Restricciones Lineales
 - 2.1.Con Restricciones de Equidad
 - 2.1.1.Lineales-Cuadráticos
 - 2.1.2.No Lineales

- 2.2.Con Restricciones de Inequidad
 - 2.2.1.De Programación Lineal
 - 2.2.2.Lineales-Cuadráticos
 - 2.2.3.No Lineales con Restricciones Lineales
- 3. De Programación No Lineal
 - 3.1.Con Restricciones de Equidad
 - 3.2.Generales (Más difíficil)

PROBLEMA

- · Todos estos tipos de problemas requieren conocimiento de f.
 - · Por ende, del espacio de solución.
- Asumen conocer a ∇f en todo momento.
- · Ignorando el problema de convergencia principal:
 - · ¿Cómo sabemos que el algoritmo ha convergido?

CLASIFICACIÓN DE ALGORITMOS [RASCÓNY LENNOX]

- Métodos Basados en Gradientes
 - Gauss-Sidel
 - Newton-Raphson
 - Búsqueda de Líneas (Armijo-Wolfe)

- Algoritmos de Caja Negra
 - Templado Simulado
 - Algoritmos Genéticos
 - Inteligencia de Enjambre
 - Evolución Diferencial

ALGORITMOS DE CAJA NEGRA

- · Caja Negra: sólo entradas y salidas.
 - · No hay conocimiento a-priori de f.
- Versátiles, requiriendo relativamente poca sintonización de parámetros.
- · Emplean métodos estocásticos.
 - · Usualmente, simulan fenómenos naturales.

PARA MATEMÁTICOS...

- Son algoritmos que calculan el salto de xi a xi+1 como:
 - $x_{i+1} \leftarrow x_i + random$
 - Donde "random" es un factor estocástico que puede o no tomar en cuenta el valor de $f(x_i)$.

CLARO...

- · Obviamente, lo anterior es sólo una sobre-simplificación.
- Pero, "introduce" un problema que no les gusta a los matemáticos:
 - Ya no está $\nabla f(x)$; ya no sabemos si ha convergido.
- "Introduce" está en comillas, porque, en realidad, este problema siempre ha estado ahí, nada más se ha ignorado.

PERO... ¿CUANDO SABEMOS QUE YA CONVERGIÓ?

ALTERNATIVA # I LA MÁS POPULAR

- Cuando f(x) pare de cambiar.
 - · Numéricamente hablando, ¿Qué significa eso?

CONTINUACIÓN...

· ¿Cómo se decidió cuántas iteraciones esperar?

NÚMERO DE ITERACIONES

- "Empíricamente" es una mala palabra en ambas la academia y en la industria: lo óptimo tiene que asegurarse.
 - · Es un sinónimo de "a ojo de buen cubero".
- El número de iteraciones a esperar a que f(x) no cambie, es un parámetro que comparten los algoritmos de caja negra.

LA PREGUNTA DE LOS 64,000

- Si el número de iteraciones fueron 1000, ¿Cómo sabemos que a la iteración 1001 no se hubiera encontrado un valor mejor de f(x) de con el que terminamos?
- ¿Están preparados para vivir con eso pesando sobre su conciencia?

ALTERNATIVA #2

• ¿Sugerencias?

ESE ES EL PROBLEMA: NO HA HABIDO OTRA ALTERNATIVA VIABLE

De hecho, sí, pero nada significativamente mejor que Alternativa # I

ALGO QUE LO ALIVIA

- Convergencia en Probabilidad
 - La probabilidad de una solución "inusual" decrece mientras la secuencia de números crece.
- Establecido en la Ley Débil de Números Grandes:
 - $\bar{A}_n \rightarrow \mu$ cuando $n \rightarrow \infty$
 - Donde $\bar{\mathbf{A}}_n$ es el promedio de n muestras, y $\boldsymbol{\mu}$ es el valor esperado.

EN ESPAÑOL

• Dadas suficientes muestras, la función proveerá el valor esperado.

¿QUÉ SIGNIFICA ESTO?

- Tenemos una forma de garantizar convergencia:
 - · El algoritmo tiene que "arrastrar" información pasada.
 - Un número GRANDE de iteraciones:
 - No sólo para esperar a que f(x) no cambie, sino de todo el proceso.
- Esta forma de "arrastre" puede indicarnos, a grosso modo, el número mínimo de iteraciones para garantizar convergencia.

SIGUIENTE CLASE

- Algoritmos Genéticos
- Inteligencia de Enjambre
- Evolución Diferencial

- · Tarea para el Lunes 7 de Marzo:
 - Ensayo de 5 cuartillas (letra de l 2 puntos, espacio sencillo) resumiendo y opinando sobre el artículo "Simple Explanation of the No Free Lunch Theorem of Optimization".