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Abstract 

The No Free Lunch Theorem of Optimization (NFLT) is an 
impossibility theorem telling us that a general-purpose 
universal optimization strategy is impossible, and the only 
way one strategy can outperform another is if it is 
specialized to the structure of the specific problem under 
consideration. Since virtually all decision and control 
problems can be cast as optimization problems, an 
appreciation of the NFLT and its consequences is essential 
for controls engineers. In this paper we present a framework 
for conceptualizing optimization problems that leads useful 
insights and a simple explanation of the NFLT. 

1. Introduction 

Many scientific fields of study have postulated 
impossibility theorems. In mathematics, for example, 
Godel’s theorem roughly states that in any mathematical 
system facts always exist that cannot be proved or 
disproved. In economics, Arrow’s Impossibility Theorem 
on social choice precludes the ideal of a perfect democracy. 
The No Free Lunch Theorem (NFLT) [1,2,5,7,8,10-141, 
though far less celebrated and much more recent, tells us 
that if we cannot make any prior assumptions about the 
optimization problem we are trying to solve, no strategy can 
be expected IO perform better than any other. Put another 
way, a general-purpose universal optimization strategy is 
theoretically impossible. and the only way one strategy can 
outperform another if it is specialized to the specific 
problem under consideration. 

Without question, optimization is central to the decision 
and control sciences making an appreciation of the NFLT 
and its consequences fundamental. Our contribution in this 
paper is to provide what we believe is a simple and intuitive 
explanation of the NFLT and its implications. Our main 
assumption is one we call the finite world assumption, 
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where all input and output sets are assumed to be discrete 
and finite in size. The finite world is the world of digital 
computers, and hence does not really impose any loss of 
generality since virtually all optimization nowadays is done 
using digital computers. In a finite world all the information 
about an optimization problem can be summarized in a 
matrix we call the P-matrix (for problem matrix). In its 
most broad interpretation, the rows of the P-matrix are 
strategies, the columns the universe of all possible 
problems, and the entries performances of the strategies on 
the problems. The essence of the NFLT is that the row 
averages in a P-matrix are always equal, i.e., averaged over 
all possible problems, all strategies give the same 
performance. Deeper structure of the P-matrix extends the 
result to search algorithms and leads to many other useful 
insights. We point out, that although our presentation here 
is informal, all of results can be made rigorous. 

2. Problem Formulation 

In optimization we are concerned with mappings of the 
form )=Ax), where x is a candidate from a “solution” set X, 
and y is a scalar from a “performance” set Y. The 
optimization objective is to choose the solution XE X whose 
performance y is “best” in some sense (e.g.. minimizesfl. In 
afinite world the sets X and Yare discrete and finite in size 
representing, for example, the input and performance 
spaces of a discretized continuous-valued optimization 
problem or the set of tours and tour lengths of the 
combinatorial Traveling Salesman Problem (TSP). When 
the sets X and Yare finite, then the set of possible mappings 
from X to Y is also finite. In particular, if X has size wl and 
Y has size Iy, then by direct enumeration there are lFJ=lqH 
unique mappings in the set F=Lf:X-+Y). 

2.1 The P-matrix 
Since the sets X, Y, and F are all discrete we can assign an 
integer label to each of their elements, i.e., let 

How we label the elements is entirely arbitrary, 3s we will 
see later. We now define the P-matrix as the matrix with wl 
rows labeled with the elements of X, 14 columns labeled 
with the elements of F, and ij-th entry equal tojJxJE Y. As 

X = { X O S ~ , . . . X ~ ~ ~  1, Y={yo,yl, ..., Y ~ + I  j ,  and F=VOJI....&~ ). 
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an example, if IXI=3 and IYl=2, then IFI=lk'lh8 and the P- 
matrix is given by, 

6 7  

xo I 

x2 Y O  YO YO YO YI YI Y l  Y I 

XI I I (1) 

In practice, the size of the input set 1x1 is often exponential 
in the problem size (i.e., the dimension of a discretized real- 
variable problem or the number of cities in a TSP). 
Likewise, 14 is also often huge. This generally precludes 
actually constructing the P-matrix, storing it in memory, 
and using it to solve optimization problems. As a 
conceptual framework, though, the P-matrix can provide 
useful insights and simplify proofs. 

2.2 A Fundamental Counting Lemma 
The P-matrix is a generalization of a class of matrices we 
call counting matrices. 

Definition 2.1: For a given pair of positive integers 0 and I ,  
the I by d matrix whose columns are obtained by counting 
in base 0 from 0 to d-l is called a counting matrix C. 

For example, the counting matrix for 1=3 and 0=2 is 
obtained by counting in base-2 (binary) from 0 to 7, i.e., 

1 (2) 

0 1 0 1 0 1 0 1  
0 1 1 0  0 I 1  

0 0 0 0 1 1 1 1  

Counting matrices have the following key properties, 

LEMMA 2.1 (Counting Lemma): For a counting matrix 
(defined by a given pair ofpositive integers 0 and 0: 

a) Each integer 0,1 ...., 0 appears d-' times in each row. 
b) Pick any row i and any entry C,. The submatrix formed 
by eliminating row i and all columns k such that Ca&, is a 
counting matrix with 1-1 rows and 0'" columns. 

Proof: The proofs are not hard, so lacking space we will 
only be informal here. Regarding a), it is clear its hold for 
the counting matrix in (2), and a few examples should 
convince you that it holds for counting matrices of any size. 
T o  illustrate b), begin with the counting matrix in (2) and 
form a submatrix by eliminating row 1 and all columns 
where the row I entry is not 1. Doing this gives, 

which is the counting matrix associated with 1 2 ,  &2. 
Note that this property is recursive. 

Property a) leads to an immediate corollary 

Corollary 2.1: For a counting matrix, all row sums, and 
hence row averages, are equal. 

Now note that the matrix whose entries are the integer 
labels of the y's in the P-matrix in ( I )  is precisely the 
counting matrix in (2). In other words, P-matrices are 
structurally equivalent to counting matrices. Hence, P- 
matrices satisfy the counting lemma (with O=lq and /=!XI) 
regardless of the values associated with the y's. 

3. The No Free Lunch Theorems 

The P-matrix and counting lemma are at the heart of our 
explanation of the NFLTs. 

3.1 Optimal Strategy Selection 
In the most general setting, the x's (rows of the P-matrix) 
are strategies and the f s  (columns of P) are all possible 
optimization problems. In this most general setting, a 
strategy is a mapping from the space of available 
information to a control variable or decision space. 
Strategies include methods involving search, adaptation, 
learning, voting, feedback, dynamic programming, 
evolution, randomization, and even humans in the loop. In 
short, the concept of strategy covers any method for coming 
up with a solution to an optimization problem. Nothing can 
be more general or more inclusive. That all row averages in 
a P-matrix are equal leads immediately to the NFLT, 
averaged over all problems, all srrategies have the same 
performance. Or put another way, it is impossible to 
develop an optimization strategy that is universally better 
than all others. 

3.2 Function Optimization 
A more specific and familiar setting involves function 
optimization problems of the form, 

min f ( x )  (4) 
E X  

where the X'S are vectors and the f s are different objective 
functions. The usual strategy for solving (4) is via search. 
The NFLT for search algorithms that halt after picking m 
distinct samples from X is given in [8,13,14]. One 
interpretation of the NFLT for search is that unless you can 
make prior assumptions about the f c F  you are working on, 
then no search strategy, no matter how sophisticated, can 
be expected to perform better than any other. Proving this 
result is complicated by the fact that it must be established 
for all algorithms, including those that learn and adapt 
themselves based on the performances they observe as they 
sample. Using the P-matrix, however, the result can be 
made intuitive. In particular, suppose you have the entire P- 
matrix available to use in guiding your search for the 
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optimal solution. Then the most powerful strategy you 
could develop would be one that works as follows. Each 
time you take a simple x; and observe performance y,  
eliminate from the P-matrix row i and all columns j for 
which f;(x;)#y. Intuitively, one should think that such a 
procedure should allow you to quickly identify which&F 
you are working on, at which point you can pick the 
optimal row by inspection of the P-matrix. However, 
because each of the submatrices formed by the above 
procedure are themselves (smaller) P-matrices, each of the 
remaining rows all have equal average performance over 
the remaining columns. Hence, there is nothing you can 
learn from this procedure that will help you identify the 
optimal any more efficiently than any other procedure. In 
other words, when you know nothing and must assume that 
all jC F are equal likely, then all search strategies are on 
equal footing. 

The NFLT for search algorithms leads to some rather 
surprising and counterintuitive results (see also [8,13,141). 
Since on average all search algorithms give the same 
performance, the surprising result is that on average all 
search algorithms perform no berrer than random search. 
This means that unless we can make some prior 
assumptions about t h e j C F  we are working on, no search 
algorithm we choose can a priori be expected to perform 
any better than random search, and the risk we take is that it 
might actually perform worse than random search! A 
counterintuitive result is that when averaged over the 
universe of all objective functions hill-climbing actually 
performs the same as hill-descending even when the goal is 
function minimization! 

3.3 Stochastic Optimization 
Sometimes we are not able to evaluate the objective 
function in (4) exactly, but rather we have y=l(x,o), where 
E X  is a candidate solution and OEQ is a random quantity 
reflecting uncertainty or error in our ability to evaluate its 
performance y e  Y.  This leads to the stochastic optimization 
problem, 

min,,~Edl(x,w)l (5 )  

where E is the expectation operator. Again, in a finite world 
the spaces X, Y, and !2 are discrete and finite. Thus, if the 
probability mass function defined over 51 is stationary, then 
conceptually a stochastic optimization problem is identical 
to the deterministic optimization problem, 

where p(w)  is the probability mass associated with o.2.This 
observation immediately extends the NFLT in Section 3.2 
to stochastic problems. 

3.4 Input Representarions and Neighborhood Structures 
The performance of certain algorithms (e.g., genetic 
algorithms) are sensitive to the input representation [IO]. 
One way to view a representation is as the labeling of the 
elements of the input space (recall we are free Io assign 
integer labels to the elements of the input space in any way 
we wish). The structure of the P-matrix immediately gives 
an NFLT for representations, when we cannot make any 
prior assumptions about which f6F we are working on, 
rhen there is no advantage io be gained from a differenr 
represenration. Specifically, suppose we introduce another 
input space X ,  which is one-to-one related to X. Now 
consider the composite mapping X+X+Y and the 
associated composite function space F=l f :X+Y) .  The 
effect of the new representation X is simply to re-index the 
original f s  (i.e., “shuffle” the columns of the P-matrix). 
Hence, the counting lemma still applies and the above 
statement follows immediately. 

By neighborhood structure we mean the relationship 
between the performance of x; and its “neighbors” and 
x,+~. Even when discretized into a finite world, real-variable 
functions with properties like continuity, convexity, and 
differentiability naturally impose “nice” neighborhood 
structure on the search space in the sense that the neighbors 
of some x; generally give similar performance. This can 
make it easy for an algorithm like hill-decent to search the 
solution space. Combinatorial problems, like the Traveling 
Salesman, on the other hand, rarely seem to have such nice 
neighborhood structures. It should be clear that for any 
specific p F, a proper labeling of the input set X can 
produce any desired neighborhood structure (e.g., 
monotonicity). Thus, one can imagine fixing the search 
algorithm (e.g., genetic algorithm) and searching the space 
of input representations for the one that works best. 
However, since there are many more ways to index the 
elements of X than there are elements of X, this problem is 
much larger than simple brute force search over all X. 

4. Insights from the P-matrix 

The P-matrix provides many useful insights about 
optimization. 

Of course, in practice solving stochastic optimization problems is 
usually much harder than solving deterministic ones since to 
discover the best solution we not only need to explore the solution 
space we also need to evaluate (estimate) the expectation of each 
candidate we explore. In general. efficient stochastic optimization 
involves a tradeoff between a breadth component to explore the 
solution space X and a deprh component to obtain increasingly 
more accurate estimates of the performance of each candidate 
examined (see [91). 
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4.1 Conservation of Perfarmanee 
The essence of the NFLT is that all row averages in the P- 
matrix are equal. Another way to view this result is as a 
conservation of average performance law. By conservation 
of average performance, if a strategy gives better than 
average performance over some subset of problems, then 
there must be another subset where it performs worse than 
average. Conservation of average performance, however, 
does not preclude the possibility of strategies that perform 
well above average on a few problems, but only slightly 
worse than average on many others. When we know 
nothing about the f € F  we are working on, such strategies 
could be useful. A simple example, however, shows that 
such strategies are not possible. 

Consider a P-matrix and let the rows be strategies and the 
columns problems. Suppose there are three possible 
performance values Y={0,1,2), larger being better. Now 
pick any two rows (strategies). In order for the two to have 
the same average performance, but for one to have worst 
case performance that is only slightly less than average, the 
distribution of the y’s in the two rows would have to be 
different. In particular, one row would need to have more 
1’s than the other. However, this is not possible, since in a 
P-matrix every performance value in Y must appear 1qM-l 
times in each row. A consequence of this is that for any pair 
of strategies x, and xj, if xi beats xj badly on some subset of 
problems, then there must be another subset where the 
opposite is true. This argument can be rigorously extended 
from strategies to search algorithms. 

4.2 Pnor Assumptians 
An implication of the conservation of performance is that 
over subsets of the @ F  the NFLT does not hold. Over 
subsets there are performance differences between 
strategies. This is important because the problems we 
encounter in the real world are usually restricted (e.g., by 
the laws of physics) to subsets of the possible mappings in 
F.  The key to moving beyond the NFLT and into practice 
is quantifying our assumptions the mappings we are likely 
to encounter, determining what structural properties these 
assumptions imply about the likely mappings, and choosing 
strategies that can efficiently exploit those structural 
properties (see also [ 10-121). The Ricatti equation solution 
to the LQG problem is a shining example of this. 

The usual way to represent prior knowledgelassumptions 
about the problem we are working on is by putting a 
distribution, pv), over the columns of the P-matrix. At one 
end of the knowledgelassumptions spectrum, we know 
nothing about the problem& F we are working on. This is 
equivalent to a uniform distribution over the columns of the 
P-matrix (i.e., making all f c F  equally likely). At the other 
end of the spectrum we know exactly which column (i.e., 
which problemfl we are working on. Knowingf, however, 
does not mean that we know its solution. It only means that 
we are certain about the structure of the problem (e.g., it is 

strictly convex). In practice, our knowledgelassumptions is 
usually a distribution that lies somewhere between these 
two extremes. 

The NFLTs in Section 3 are for the case where pv) is 
uniform over thefizF. An NFLT can also be established for 
the case where all priors pv) are equally likely [14]. 
Intuitively, this follows from the NFLTs in Section 3 since 
all priors equally likely is equivalent to a uniform 
distribution over all@ F. 

4.3 Perfarmance/Sensih’vily Tradeoff 
In principle if we know pv) (the distribution of likely 
problem instances), then we can choose a row of the P- 
matrix (strategy) that has better average performance than 
any other. This will constitute the “optimal” strategy. 
Focusing only on performance, however, can lead to a 
design that is sensitive to spectacular failure. There are two 
ways this might happen. In the first case, since every y c  Y- 
the best as well as the worst-appears an equal number of 
times in each row, if we are ever wrong about pv), then 
the performance of our “optimal” strategy can be arbitrarily 
poor. In the second case, we might allow occasional 
spectacular failures if they are more than offset by generally 
spectacular performance. An example of the first case is the 
automobile airbag. While airbags have reduced the 
probability of injury for adult males, small women, 
children, and child seats pose a sensitivity not considered in 
pv). An example of the second case are fighter aircraft. 
These have very high performance, but any structural 
damage almost inevitably results in disaster. The only hope 
is that the high performance minimizes the likelihood of 
structural damage. 

4.4 PerformancelRnbustness Tradeoff 
Closely related to the performancelsensitivity tradeoff is the 
performancdrobustness tradeoff. Robust solutions attempt 
to overcome the sensitivities inherent in highly optimized 
solutions. The tradeoff is that robust designs must generally 
give up some performance. Again there are two cases that 
call for a robust design. In the first case, we admit that our 
knowledge about likely problem instances pv) is 
imperfect, e.g., due to limited experience with the problem 
domain or known modeling error. In the second case, we 
might have good knowledge po, but the consequences of 
spectacular failure, however low its probability, are just too 
enormous to contemplate. 

In the first case, if we are unsure about pv) then we must 
relax our assumptions and select a strategy that gives good 
performance over a larger subset of t h e 6  F. Suppose pv) 
is uniformly distributed over some subset of columns F,. 
Let the highly optimized solution, x,*, be the row that gives 
the best average performance over F,. For the robust 
solution, let us choose a subset F2 such that F l c F l .  Assume 
a uniform distribution over F2. and let the robust solution, 
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x2. be the row that gives the best average performance. Note 
that in general rows xI* and x2 are not the same. Moreover, 
when they are not the same and xI* is unique, then the 
average performance of x1 over F I  is always worse than the 
average performance of x,* over F,. In other words, a 
robust solution must generally give up some performance in 
return for reduced sensitivity to errors in @(n. 

Regarding the second case, a highly optimized solution will 
generally allow spectacular failures as long as they occur 
with low enough probability. That is, pick any subset, F , ,  of 
the columns in a P-matrix. If the number of columns in F ,  
is large enough, then virtually all the performance values 
YE Y (including the worst) will appear in some row of the 
subset. Assume some p(n over the columns, and find the 
row that gives the best average performance. Again, this is 
the highly optimized solution xI*. Chances are that xI* will 
allow the worst possible YE Y (spectacular failure), although 
with low probability. Now find the row, q, that gives the 
best average, but at the same time never returns the worst 
possible performance. In general, xI*tx2, and the average 
performance of x2 is less than that of xI*. So in this case, a 
robust solution that tries to lower the probability of 
spectacular failure generally performs less well on average 
than one that allows an occasional disaster. 

4.5 Random Restarts 
In search problems, it is often observed that randomly 
restarting the search from several new initial points can be 
useful in  getting a good solution. The framework of the P- 
matrix provides an easy explanation for this. For a specific 
search algorithm, let us take a fixed number of samples 
starting from some specific initial point EX. This 
constitutes a mapping. Let us say we know very little about 
the problem, which means that it could be any j% F. In the 
P-matrix, let the rows X represent the set of possible 
starting points. Let the entries of the matrix be the 
performances from the algorithm when applied to the 
(unknown) problem from initial point XEX. The set of 
possible problems are the columns of the matrix. Now 
depending on the problem, some rows will return more 
favorable results than others. Let the probability that a row 
(an initial starting point) results in a good return be p .  Then 
the probability that n random starts will result in  a good 
return is given by l-(l-p)” = np. An n-fold increase in 
success probability is achieved by n random restarts! 
Similar statements apply if we change the rows from 
representing different initial starting points to representing 
different strategies as in Section 3.1. 

4.6 Ordinal Optimization 
As mentioned, the size of the input space Kl is typically 
exponential in the problem size. Hence, if there is to be any 
hope, a search strategy must be able to locate the optimal 
solution after sampling a fraction of X that grows 
exponentially slowly in problem size. For a problem like 
the Minimum Spanning Tree (MST) problem we can do  it 

with a greedy algorithm. For the similar TSP, on the other 
hand, no such algorithm is known and (unless P=NP) may 
not exist [41. For other problemsfmay be hard to evaluate 
(e.g., requires long simulation experiments). In either case, 
practical limits on time and computing budget necessitate 
that we must “soften our goals” from insisting on the “true 
optimal” solution to being satisfied with a solution that is 
“good enough with high probability.” This is the idea 
behind Ordinal Optimization (00) 161. How 00 works is 
clear when couched in terms of the P-matrix. Specifically. 
00 is based on two fundamental tenets: 

Performance order is easier to determine than 
performance value. The idea is that to separate good 
solutions from bad all we need to know is whether or not 
Ax;)>flxj), we do not need to know how much better&;) is 
than Axj) ,  i.e., we do  not need to calculate the difference 
Axj)-Axj). It turns out that determining performance order 
requires much less effort than determining performance 
value [3].’ This saves computational effort. In addition, 
with performance order rather than performance value, the 
number of possible functions (columns in the P-matrix) is 
lXlwl rather than IY”. That is, with order we replace the 
performance value space (yo& ,...,yl ,,.I) with the 
performance order space (1.2 ,...JXI 1, and the f map each 
input {xo.rI.....rly~IJ to its performance order in 
( 1 2 ,  ...,wl J. When Il‘l>Fl this represents an exponential 
reduction in the universe of possible problem instances. 

Sojiening the goal decreases the compiitational burden. 
With goal softening, we no longer insist on the solution that 
gives the very best possible performance. Instead, we are 
satisfied with any solution that is “good enough,” e.g., gives 
performance that is ranked in the top 1%. That is, instead of 
seeking the solution that returns a single point (the best 
performance value), we accept any solution that returns 
performance that falls into a “good enough subset” of the 
performance space Y. Since each Y E  Y appears lk‘lW.’ times 
in each column of the P-matrix, each additional value of Y 
that we accept as “good enough” adds IY”.’ more columns 
to the subset of F for which a given XEX provides an 
acceptable solution. In this way we have a much higher 
probability of success after exploring only a small fraction 
of the inputs. 

4.7 Optimization against Adversaries 
An alternative way to look at optimization is as a two- 
player matrix game with the P-matrix playing the role of 
the payoff matrix. For the optimization problems 
considered so far, “nature” chooses a column (problem 
instance) according to some 630, and our goal is choose 
the row (strategy) that optimizes our expected payoff. 
Imagine instead that we face an adversary who follows our 

To see this yourself, take two boxes, one in each hand. I t  is 
much easier to decide which box is heavier than it is to decide 
precisely how much heavier. 
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choice of strategy by deliberately trying to pick problem 
instances that return poor performance (good for the 
adversary, bad for us). This is the sort of problem faced by 
information technology administrators in trying to secure a 
computer networks against hacker attack. 

Examining the P-matrix makes the difficulty with 
adversaries clear. Because each ~ E Y  appears an equal 
number of times in every row, it is always possible for an 
adversary lo pick a column (attack) that returns what from 
our point of view is the least desirable outcome. In other 
words, against an adversary of unlimited power, all 
strategies have the same performance (see also [ I f ) .  Here 
unlimited power is in the sense that the adversary has the 
ability to search the P-matrix for the column (security 
attack) that gives the worst performance for the row 
(security strategy) we have picked. It is  assumed that while 
the adversary is probing our system for security holes, our 
security strategy is not changing. For computer network 
security this is often the situation. since it is typically only 
after a successful attack that the security strategy is 
changed. 

Optimization against adversaries makes it clear that security 
is much harder than performance optimization. In 
optimization, “nature” picks its problem instances 
according to some generally invariant laws. In security, in 
contrast, our adversary is constantly learning, adapting, and 
discovering new attacks. Moreover, the computing power 
available to them to use in carrying out attacks is growing 
exponentially (Moore’s law). On the other hand, what the 
P-matrix hides is the effort in formulating different attacks, 
somef i  F are much more difficult to realize. Conceptually, 
what we try to do  in security engineering is to design our 
system so that only those attacks that we can “defend’ are 
achievable. For those we cannot defend we try, for 
example, to guarantee that it would require an exponential 
amount of computational effort for an attacker to realize 
them. This is the idea behind cryptography for instance. 

5. Conclusions 

In a finite world, the universe of all possible optimization 
problems can be summarized by a P-matrix. In the broadest 
sense. the rows of this matrix can be taken as strategies, the 
columns as all possible problems, and the entries as the 
performances of the strategies over the problems. That all 
rows have the same average is the NFLT in a nutshell, 
making it clear that ifanything is possible, then nothing can 
be expected. The value of the P-matrix and NFLT is that 
they render certain assertions or conclusions either obvious 
or problematical, e.g.. strategy x is good-not if you do  not 
specify the class of problems you intend to apply it to. In 
this sense it is clear that the assumptions are the key. The 
practice of optimization boils down to what assumptions we 
can make about likely problem instances, what structural 
properties do the assumptions imply, what strategy is best 

matched that structure, and how sensitive our strategy is to 
the assumptions. While we have come far, our ever 
increasing reliance on large scale networked infrastructures 
(e.g., power grids and Internets), which are currently not 
well understood and inarguably insecure, has seemingly 
invalidated many classic assumptions and opened up many 
exciting challenges. 
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