Proceedings of the 40th IEEE-
Conference on Decision and Control
Orlando, Florida USA, December 2001

FrM08-6

Simple Explanation of the No Free Lunch Theorem of Optimization

Yu-Chi Ho and David L. Pepyne

Division of Engineering and Applied Sciences
Harvard University
Cambridge, MA 02138
ho,pepyne@hrl.harvard.edu

Abstract

The No Free Lunch Theorem of Optimization (NFLT) is an
impossibility theorem telling us that a general-purpose
universal optimization strategy is impossible, and the only
way one strategy can outperform another is if it is
specialized to the structure of the specific problem under
cousideration. Since virtually all decision and control
problems can be cast as optimization problems, an
appreciation of the NFLT and its consequences is essential
for controls engineers. In this paper we present a framework
for conceptualizing optimization problems that leads useful
insights and a simple explanation of the NFLT.

1. Introduction

Many scientific fields of study have postulated
impossibility theorems. In mathematics, for example,
Godel’s theorem roughly states that in any mathematical
system facts always exist that cannot be proved or
disproved. In economics, Arrow’s Impossibility Theorem
on social choice precludes the ideal of a perfect democracy.
The No Free Lunch Theorem (NFLT) [1,2,5,7.8,10-14],
though far less celebrated and much more recent, tells us
that if we cannot make any prior assumptions about the
optimization problem we are trying to solve, no strategy can
be expected to perform better than any other. Put another
way, a general-purpose universal optimization strategy is
theoretically impossible, and the only way one strategy can
outperform another if it is specialized to the specific
problem under consideration.

Without question, optimization is central to the decision
and control sciences making an appreciation of the NFLT
and its consequences fundamental. Our contribution in this
paper is to provide what we believe is a simple and intuitive
explanation of the NFLT and its implications. Our main
assumption is one we call the finite world assumption,

Funding for this work was provided by EPRI/DoD CIN/SI
contract WO08333-03, Army contracts DAAL 03-92-G-0115 and
DAAH 04-0148, AFOSR contract F49620-98-1-0387, ONR
contract N0OGO14-98-10720, and a DoD CIP/IA Fellowship.

0-7803-7061-9/01/$10.00 © 2001 IEEE

where all input and output sets are assumed to be discrete
and finite in size, The finite world is the world of digital
computers, and hence does not reaily impose any loss of
generality since virtually all optimization nowadays is done
using digital computers. In a finite world all the information
about an optimization problem can be summarized in a
matrix we call the P-matrix (for problem matrix). In its
most broad interpretation, the rows of the P-matrix are
strategies, the columns the universe of all possible
preblems, and the entries performances of the strategies on
the problemis. The essence of the NFLT is that the row
averages in a P-matrix are always equal, i.e., averaged over
all possible problems, all strategies give the same
performance. Deeper structure of the P-matrix extends the
result to search algorithms and leads to many other useful
insights. We point out, that although our presentation here
is informal, all of results can be made rigorous.

2. Problem Formulation

In optimization we are concerned with mappings of the
form y=f(x), where x is a candidate from a “'solution™ set X,
and y is a scalar from a “performance” set Y. The
optimization objective is to choose the solution xe X whose
performance y is “best” in some sense (e.g., minimizes f). In
a finite world the sets X and Y are discrete and {inite in size
representing, for example, the input and performance
spaces of a discretized continuous-valued optimization
problem or the set of tours and tour lengths of the
combinatorial Traveling Salesman Problem (TSP). When
the sets X and Y are finite, then the set of possible mappings
from X to Y is also finite. In particular, if X has size |X| and
Y has size |Y], then by direct enumeration there are JF]=|y}X
unique mappings in the set F={fX-¥}.

2.1 The P-matrix

Since the sets X, Y, and F are all discrete we can assign an
integer label to each of their elements, ie., let
X={xoxy,. o}y Y={yoyt-. oy), and F={fofi... figa}.
How we label the elements is entirely arbitrary, as we will
see later. We now define the P-matrix as the matrix with [X]
rows labeled with the elements of X, |F} columns labeled
with the elements of F, and i j-th entry equal to fi(x)e Y. As

4409

mailto:ho,pepyne@hrl.harvard.edu

an example, if |[X|=3 and |¥|=2, then |Fl=|¥"=8 and the P-
matrix is given by,

h A A H £ 5 f F
Xp Yo pa| Yo bl Jo Y1 Yo Y
aly [y n|ylywlyiynlxn |
Xy Yo Yo Yo | Yo | W Y1 B N

In practice, the size of the input set |X] is ofien exponential
in the problem size (i.e., the dimension of a discretized real-
variable problem or the number of cities in a TSP).
Likewise, [¥] is also often huge. This generally precludes
actually constructing the P-matrix, storing it in memory,
and using it to solve optimization problems. As a
conceptual framework, though, the P-matrix can provide
useful insights and simplify proofs.

2.2 A Fundamental Counting Lemma
The P-matrix is a generalization of a class of matrices we
call counting matrices.

Definition 2.1: For a given pair of positive integers O and],
the / by O matrix whose columns are obtained by counting
in base O from 0 to (-1 is called a counting matrix C.

For example, the counting matrix for I=3 and 0=2 is
obtained by counting in base-2 (binary) fromQto 7, i.e.,

!
c= 1 @
I

(=R =

1 01
0t 1
0 0 0C

- O

1
0
1

——

Counting matrices have the following key properties,

LEMMA 2.1 (Counting Lemma): For a counting matrix
(defined by a given pair of positive integers O and I):

a) Each integer 0,1,...,0 appears O times in each row.

b} Pick any row i and any entry C;. The submatrix formed
by eliminating row i and all columns k such that Cy=C; is a
counting matrix with I-1 rows and 0" columns.

Proof: The proofs are not hard, so lacking space we will
only be informal here. Regarding a), it is clear its hold for
the counting matrix in (2), and a few examples should
convince you that it holds for counting matrices of any size.
To illustrate b}, begin with the counting matrix in (2) and
form a submatrix by eliminating row 1 and all columns
where the row 1 entry is not 1. Doing this gives,

01 01
0ol 140] 1=
{0011}

3)

which is the counting matrix associated with /=2, (O=2.
Note that this property is recursive.)

Property a) leads to an immediate corollary.

Corollary 2.1: For a counting matrix, all row sums, and
hence row averages, are equal.

Now note that the matrix whose entries are the integer
labels of the y’s in the P-matrix in (1) is precisely the
counting matrix in (2). In other words, P-matrices are
structurally equivalent to counting matrices. Hence, P-
matrices satisfy the counting lemma (with O=|Y] and /=|X|)
regardless of the values associated with the y’s.

3. The No Free Lunch Theorems

The P-matrix and counting lemma are at the heart of our
explanation of the NFLTs.

3.1 Optimal Strategy Selection

In the most general setting, the x's (rows of the P-matrix)
are strategies and the f's (columns of P) are all possibie
optimization problems. In this most general setting, a
strategy is a mapping from the space of available
information to a control variable or decision space.
Strategies include methods involving search, adaptation,
learning, voting, feedback, dynamic programming,
evolution, randomization, and even humans in the loop. In
short, the concept of strategy covers any methoed for coming
up with a solution to an optimization problem. Nothing can
be more general or more inclusive. That all row averages in
a P-matrix are equal leads immediately to the NFLT,
averaged over all problems, all strategies have the same
performance. Or put another way, it is impossible to
develop an optimization strategy that is universally better
than all others.

3.2 Function Optimization
A more specific and familiar setting involves function
optimization problems of the form,

min £ (x) {4

where the x’s are vectors and the fs are different objective
functions. The usual strategy for solving (4) is via search.
The NFLT for search algorithms that halt after picking m
distinct samples from X is given in [8,13,14]. One
interpretation of the NFLT for search is that unless you can
make prior assumptions about the feF you are working on,
then no search strategy, no matter how sophisticated, can
be expected to perform better than any other. Proving this
result is complicated by the fact that it must be established
for all algorithms, including those that learn and adapt
themselves based on the performances they observe as they
sample. Using the P-matrix, however, the result can be
made intuitive. In particular, suppose you have the entire P-
matrix available to use in guiding your search for the

4410

optimal solution. Then the most powerful strategy you
could develop would be one that works as follows. Each
time you take a simple x; and observe performance y,
eliminate from the P-matrix row J and all columns j for
which f{x)#v. Intuitively, one should think that such a
procedure should allow you to quickly identify which fe F
you are working on, at which point you can pick the
optimal row by inspection of the P-matrix. However,
because each of the submatrices formed by the above
procedure are themselves (smaller) P-matrices, each of the
remaining rows all have equal average performance over
the remaining columns. Hence, there is nothing you can
learn from this procedure that will help you identify the
optimal any more efficiently than any other procedure. In
other words, when you know nothing and must assume that
all feF are equal likely, then all search strategies are on
equal footing.

The NFLT for search algorithms leads to some rather
surprising and counterintuitive results (see also [8,13,14]).
Since on average all search algorithms give the same
performance, the surprising result is that on average all
search algorithms perform no berter than random search.
This means that unless we can make some prior
assumptions about the fe F we are working on, no search
algorithm we choose can a prieri be expected to perform
any better than random search, and the risk we take is that it
might actually perform worse than random search! A
counterintuitive result is that when averaged over the
universe of all objective functions hill-climbing actually
performs the same as hill-descending even when the goal is
function minimization!

3.3 Stochastic Optimization
Sometimes we are not able to evaluate the objective
function in (4) exactly, but rather we have y=I(x,a)), where
x€ X is a candidate solution and we Q2 is a random quantity
reflecting uncertainty or error in cur ability to evaluate its
performance ye Y. This leads to the stochastic optimization
problem,

MinexEo[/(x,w)] (3)

where F is the expectation operator. Again, in a finite world
the spaces X, Y, and & are discrete and finite. Thus, if the
probability mass function defined over Q is stationary, then
conceptually a stochastic optimization problem is identical
to the deterministic optimization problem,

min f (x) = min Eq[i(x.0)}

iy S ils)plo)| K

where p() is the probability mass associated with @.> This
observation immediately extends the NFLT in Section 3.2
to stochastic problems.

3.4 Input Representations and Neighborhood Structures
The performance of certain algorithms (e.g., genetic
algorithms) are sensitive to the input representation (10].
One way to view a representation is as the labeling of the
elements of the input space (recall we are free to assign
integer labels to the elements of the input space in any way
we wish). The structure of the P-matrix immediately gives
an NFLT for representations, when we cannot make any
prior assumptions about which feF we are working on,
then there is no advantage to be gained from a different
representation. Specifically, suppose we introduce another
input space X', which is one-tc-one related to X. Now
consider the composite mapping X'—X—Y and the
associated composite function space F={f:X'—Y}. The
effect of the new representation X' is simply to re-index the
original f's (i.e., “shuffle” the columns of the P-matrix).
Hence, the counting lemma still applies and the above
statement follows immediately.

By neighborhood structure we mean the relationship
between the performance of x; and its “neighbors” x,; and
xi1. Even when discretized into a finite world, real-variable
functions with properties like continuity, convexity, and
differentiability naturally impose “nice” neighborhood
structure on the search space in the sense that the neighbors
of some x; generally give similar performance. This can
make it casy for an algorithm like hili-decent to search the
solution space. Combinatorial problems, like the Traveling:
Salesman, on the other hand, rarely seem to have such nice
neighborhood structures. It should be clear that for any
specific feF, a proper labeling of the input set X can
produce any desired neighborhood structure (e.g.,
monotonicity). Thus, one can imagine fixing the search
algorithm (e.g., genetic algorithm) and searching the space
of input representations for the one that works best.
However, since there are many more ways to index the
elements of X than there are elements of X, this problem is
much larger than simple brute force search over all X.

4. Insights from the P-matrix

The P-matrix provides about

optimization.

many useful insights

2 Of course, in practice solving stochastic optimization problems is
usually much harder than solving deterministic ones since to
discover the best solution we not only need to explore the solution
space we also need to evaluate (estimate) the expectation of each
candidate we explore. In general, efficient stochastic optimization
involves a tradecff between a breadth component to explore the
solution space X and a depth component to cobtain increasingly
more accurate estimates of the performance of each candidate
examined (see [9]).

4411

4.1 Conservation of Performance

The essence of the NFLT is that all row averages in the P-
matrix are equal. Another way to view this result is as a
conservation of average performance law. By conservation
of average performance, if a strategy gives better than
average performance over some subset of problems, then
there must be another subset where it performs worse than
average. Conservation of average performance, however,
does not preclude the possibility of strategies that perform
well above average on a few problems, but only slightly
worse than average on many others. When we know
nothing about the f& F we are working on, such strategies
could be useful. A simple example, however, shows that
such strategies are not possible.

Consider a P-matrix and let the rows be strategies and the
columns problems. Suppose there are three possible
performance values ¥={0,1,2}, larger being better. Now
pick any two rows (strategies). In order for the two to have
the same average performance, but for one to have worst
case performance that is only slightly less than average, the
distribution of the y’s in the two rows would have to be
different. In particular, one row would need to have more
I’s than the other. However, this is not possible, since in a
P-matrix every performance value in ¥ must appear [V
times in each row. A consequence of this is that for any pair
of strategies x; and x;, if x; beats x; badly on some subset of
problems, then there must be another subset where the
opposite is true. This argument can be rigorously extended
from strategies to search algorithms.

4.2 Prior Assumptions

An implication of the conservation of performance is that
over subsers of the fe F the NFLT does not hold. Over
subsets there are performance differences between
strategies. This is important because the problems we
encounter in the real world are usually restricted (e.g., by
the laws of physics) to subsets of the possible mappings in
F. The key to moving beyond the NFLT and into practice
is quantifying our assumptions the mappings we are likely
to encounter, determining what structural properties these
assumptions imply about the likely mappings, and choosing
strategies that can efficiently exploit those structural
properties (see also [10-12]). The Ricatti equation solution
to the LQG preblem is a shining example of this.

The usual way to represent prior knowledge/assumptions
about the problem we are working on is by putting a
distribution, 2{f}, over the columns of the P-matrix. At one
end of the knowledge/assumptions spectrum, we know
nothing about the problem fe F we are working on. This is
equivalent to a uniform distribution over the columns of the
P-matrix (i.e., making all fe F equally likely). At the other
end of the spectrum we know exactly which column (i.e.,
which problem f) we are working on. Knowing f, however,
does not mean that we know its solution. It only means that
we are cerfain about the structure of the problem (e.g., it is

strictly convex). In practice, our knowledge/assumptions is
usually a distribution that lies somewhere between these
two extremes.

The NFLTs in Section 3 are for the case where @(f) is
uniform over the fe F. An NFLT can also be established for
the case where all priors @{f) are equally likely [14].
Intuitively, this follows from the NFLTs in Section 3 since
all priors equally likely is equivalent to a uniform
distribution over all fe F.

4.3 Performance/Sensitivity Tradeoff

In principle if we know g@(f) (the distribution of likely
problem instances), then we can choose a row of the P-
matrix (strategy) that has better average performance than
any other. This will constitute the “optimal” strategy.
Focusing only on performance, however, can lead to a
design that is sensitive to spectacular failure. There are two
ways this might happen. In the first case, since every ye Y—
the best as well as the worst—appears an equal number of
times in each row, if we are ever wrong about @(f), then
the performance of our “‘optimal” strategy can be arbitrarily
poor. In the second case, we might allow occasional
spectacular failures if they are more than offset by generally
spectacular performance. An example of the first case is the
automobile airbag. While airbags have reduced the
probability of injury for adult males, small women,
children, and child seats pose a sensitivity not considered in
#(hH. An example of the second case are fighter aircraft.
These have very high performance, but any structurai
damage almost inevitably results in disaster. The only hope
is that the high performance minimizes the likelihood of
structural damage.

4.4 Performance/Robustness Tradeoff

Closely related to the performance/sensitivity tradeoff is the
performance/robustness tradeoff. Robust solutions attempt
to overceme the sensitivities inherent in highly optimized
solutions. The tradeoff is that robust designs must generally
give up some performance. Again there are two cases that
call for a robust design. In the first case, we admit that our
knowledge about likely problem instances g@(f) is
imperfect, e.g., due to limited experience with the problem
domain or known modeling error. In the second case, we
might have good knowledge g {f), but the consequences of
spectacular failure, however low its probability, are just too
enormous to contemplate.

In the first case, if we are unsure about £ (f} then we must
relax our assumptions and select a strategy that gives good
performance over a larger subset of the fe F. Suppose @ ()
is uniformly distributed over some subset of columns F,.
Let the highly optimized solution, x,*, be the row that gives
the best average performance over F). For the robust
solution, let us choose a subset F, such that FiCF,. Assume
a uniform distribution over F,, and Iet the robust solution,

4412

X3, be the row that gives the best average performance. Note
that in general rows x,* and x, are not the same. Moreover,
when they are not the same and x;* is unique, then the
average performance of x; over F| is always worse than the
average performance of x;* over F|. In other words, a
robust solution must generally give up some performance in
return for reduced sensitivity to errors in @ (.

Regarding the second case, a highly optimized sclution will
generally allow spectacular failures as long as they occur
with low enough probability. That is, pick any subset, F,, of
the columns in a P-matrix. If the number of columns in F,
is large enough, then virtually all the performance values
ye¥ (including the worst} will appear in some row of the
subset. Assume some {f) over the columns, and find the
row that gives the best average performance. Again, this is
the highly optimized solution x,*. Chances are that x;* will
allow the worst possible y& ¥ (spectacular failure), although
with low probability. Now find the row, x;, that gives the
best average, but at the same time never returns the worst
possible performance. In general, x,*#x,, and the average
performance of x, is less than that of x;*. So in this case, a
robust solution that tries to lower the probability of
spectacular failure generally performs less well on average
than cne that allows an occasional disaster.

4.5 Random Restarts

In search problems, it is often observed that randomly
restarting the search from several new initial points can be
useful in getting a good solution. The framework of the P-
matrix provides an easy explanation for this. For a specific
search algorithm, let us take a fixed number of samples
starting from some specific initial point xeX. This
constitutes a mapping. Let us say we know very little about
the problem, which means that it could be any fe F. In the
P-matrix, let the rows X represent the set of possible
starting points. Let the entries of the matrix be the
performances from the algorithm when applied to the
{unknown) problem from initial point x€ X. The set of
possible problems are the columns of the matrix. Now
depending on the problem, some rows will return more
favorable results than others. Let the probability that a row
(an initial starting point) results in a good return be p. Then
the probability that n random starts will result in a good
return is given by 1-(1-p)" = np. An n-fold increase in
success probability is achieved by n random restarts!
Similar statemments apply if we change the rows from
representing different initial starting points to representing
different strategies as in Section 3.1.

4.6 Ordinal Optimization

As mentioned, the size of the input space [X| is typically
exponential in the problem size. Hence, if there is to be any
hope, a search strategy must be able to locate the optimal
solution after sampling a fraction of X that grows
exponentiaily sloewly in problem size. For a problem like
the Minimum Spanmning Tree (MST) problem we can do it

with a greedy algorithm. For the similar TSP, on the other
hard, no such algorithm is known and {unless P=NP) may
not exist [4]. For other problems f may be hard to evaluate
(e.g., requires long simulation experiments). In either case,
practical limits on time and computing budget necessitate
that we must *soften our goals™ from insisting on the “true
optimal” solution to being satisfied with a solution that is
“good enough with high probability.” This is the idea
behind Ordinal Optimization (00) [6]. How OO works is
clear when couched in terms of the P-matrix. Specifically,
OO0 is based on two fundamental tenets:

e Performance order is easier to deiermine than
performance value. The idea is that to separate good
solutions from bad all we need to know is whether or not
fix)>fix;), we do not need to know how much better fix;} is
than flx;), i.e., we do not need to calculate the difference
Six)=fx). It turns out that determining performance order
requires much less effort than determining performance
value [3].> This saves computational effort. In addition,
with performance order rather than performance value, the
number of possible functions (columns in the P-matrix) is
IX[™ rather than |Y}¥!. That is, with order we replace the
performance value space {yo,y1,....¥pm1} with the
performance order space {1,2,...,[X]}, and the f map each
input {xp.%1,...x} to its performance order in
{1,2.....)X|}. When [¥]>|X| this represents an exponential
reduction in the universe of possibie problem instances.

o Softening the goal decreases the computational burden.
With goal softening, we no longer insist on the solution that
gives the very best possible performance. Instead, we are
satisfied with any solution that is “‘good enough,” e.g., gives
performance that is ranked in the top 1%. That is, instead of
seeking the solution that retumns a single point (the best
performance value), we accept any solution that returns
performance that falls into a “good enough subset” of the
performance space Y. Since each y& Y appears IYI"’(Il times
in each column of the P-matrix, each additional value of ¥
that we accept as “good enough” adds [YPH more columns
to the subset of F for which a given xe X provides an
acceptable solution. In this way we have a much higher
probability of success after exploring only a small fraction
of the inputs.

4.7 Optimization against Adversaries

An alternative way to look at optimization is as a two-
player matrix game with the P-matrix playing the role of
the payoff matrix. For the optimization problems
considered so far, “nature” chooses a column (problem
instance) according to some £(f), and our goal is choose
the row (stratepy) that optimizes our expected payoff,
Imagine instead that we face an adversary who follows our

3 To see this yourself, take two boxes, one in each hand. Jt is
much easier to decide which box is heavier than it is to decide
precisely how much heavier.

4413

choice of strategy by deliberately trying to pick problem
instances that return poor performance (good for the
adversary, bad for us). This is the sort of problem faced by
information technology administrators in trying to secure a
computer networks against hacker attack.

Examining the P-matrix makes the difficulty with
adversaries clear. Because each ye¥ appears an equal
number of times in every row, it is always possible for an
adversary to pick a column (attack) that returns what from
our point of view is the least desirable outcome. In other
words, against an adversary of unlimited power, all
strategies have the same performance (see also [1,2]). Here
unlimited power is in the sense that the adversary has the
ability to search the P-matrix for the column {security
attack) that gives the worst performance for the Tow
(security strategy) we have picked. It is assumed that while
the adversary is probing our system for security holes, our
security strategy is not changing. For computer network
security this is often the sitvation, since it is typically only
after a successful attack that the security strategy is
changed.

Optimization against adversaries makes it clear that security
is much harder than performance optimization. In
optimization, ‘“nature” picks its problem instances
according to some generally invariant laws. In security, in
contrast, our adversary is constantly learning, adapting, and
discovering new attacks. Moreover, the computing power
available to them to use in carrying out attacks is growing
exponentially (Moore’s law). On the other hand, what the
P-matrix hides is the effort in formulating different attacks,
some f& F are much more difficult to realize. Conceptually,
what we try to do in security engineering is to design our
system so that only those attacks that we can “defend” are
achievable. For those we cannot defend we try, for
example, to guarantee that it would require an exponential
amount of computational effort for an attacker to realize
them. This is the idea behind cryptography for instance.

5. Conclusions

In a finite world, the universe of all possible optimization
problems can be summarized by a P-matrix. In the broadest

sense, the rows of this matrix can be taken as strategies, the .

columns as all possible problems, and the entries as the
performances of the strategies over the problems. That all
rows have the same average is the NFLT in a nutshell,
making it clear that if anything is possible, then nothing can
be expected. The value of the P-matrix and NFLT is that
they render certain assertions or conclusions either obvious
or problematical, e.g., strategy x is good—not if you do not
specify the class of problems you intend to apply it to, In
this sense it is clear that the assumptions are the key. The
practice of optimization boils down to what assumptions we
can make about likely problem instances, what structural
properties do the assumptions imply, what strategy is best

matched that structure, and how sensitive our strategy is to
the assumptions. While we have come far, our ever
increasing reliance on large scale networked infrastructures
(e.g., power grids and Internets), which are currently not
well understood and inarguably insecure, has seemingly
invalidated many classic assumptions and opened up many
exciting challenges.

References

f1] Culberson, J.C., On the Futility of Blind Search,
Technical Report TR 96-18, Department of Computing
Science, University of Alberta, Edmonton, Alberta,
Canada, July 1996.

[2] Culberson, J.C., “On the Futility of Blind Search: An
Algorithmists View of the ‘No Free Lunch™,
Evolutionary Computation, No. 6, pp. 109-127, 1998.

[3] Dai, L., *“Convergence Properties of Ordinal
Comparisons in the Simulation of DEDS.” JOTA, Nov.
1996.

(4] Du, D.-Z and K.-l. Ko, Theory of Computational
Complexity, Wiley-Interscience, 2000.

[5}] Duda, R.O.,, PE. Hart, and D.G. Stork, Pattern
Classification (2™ ed.), John Wiley & Sons, 2001.

[6] Ho, Y.-C., “An Explanation of Ordinal Optimization:
Soft Computing for Hard Problems,” Information
Sciences, 1999,

[71 Ho, Y.-C., “The No Free Lunch Theorem and the
Human Machine Interface,” IEEE Control Systems
Magazine, June 1999.

(8] Koppen, M., D.H. Wolpert, and W.G. Macready,
“Remarks on a recent paper on the ‘No Free Lunch’
theorems,” J[IEEE Transactions on Evolutionary
Computation, Vol. 5, No. 3, pp. 2905-296, June 2001.

[9] Lin, X.-C., A New Framework for Discrete Stochastic
Optimization, Ph.D. Dissertation, Harvard University,
2000.

[10}Radcliff, N.J. and P.D. Surry, “Fundamental

. Limitations on Search Algorithms: Evolutionary
Computing in Perspective,” Computer Science Today,
1000, pp. 275-291, 1995.

[11]Sharpe, O., “Beyond NFL: A Few Tentative Steps,”
available online.

[12]Sharpe, O., “Continuing Beyond NFL: Dissecting Real
World Problems,” available online.

[131Wolpert, D.H. and W.G. Macready, “No Free Lunch
Theorems for Optimization,” IEEE Transactions on
Evolutionary Computation, Vol. 1, No. 1, pp. 67-82,
April 1997.

[l4]Wolpert, D.H. and W.G. Macready, No Free Lunch
Theorems for Search, Technical Report SFI-TR-95-02-
010, Santa Fe Institute, 1995.

4414

