Transformada de Fourier: Aspectos Teóricos

Transformada de Fourier

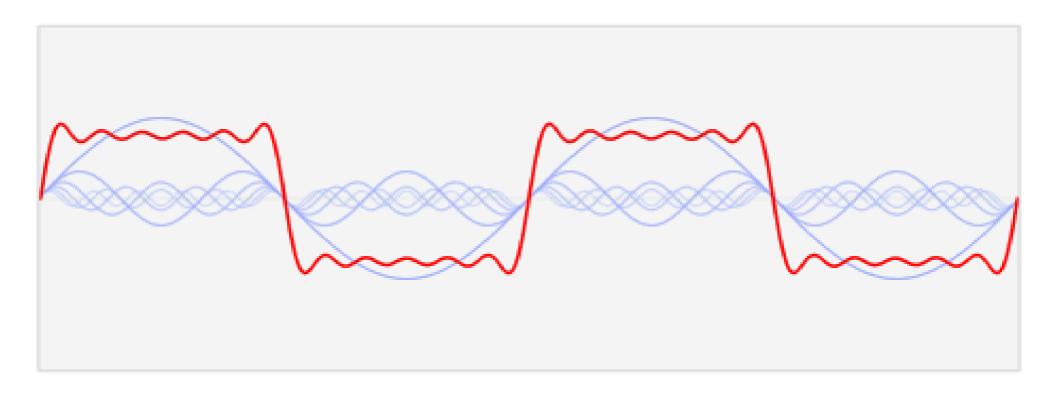
- En 1807, Fourier propuso una solución a una ecuación conocida como "La Ecuación de Calor".
- Esta ecuación trataba de describir la manera en la que el calor se distribuía en una placa de metal, dada la existencia de fuentes de calor conocidas.
- Era una ecuación diferencial parcial parabólica, que en ese entonces no tenía solución.

Transformada de Fourier

- Antes de Fourier, soluciones particulares para esta ecuación habían sido propuestas.
- Sólo aplicaban si la fuente de calor se comportaba como una onda.
 - Dícese, si se comportaba como una señal que oscila a una única frecuencia, como una función de seno o coseno.

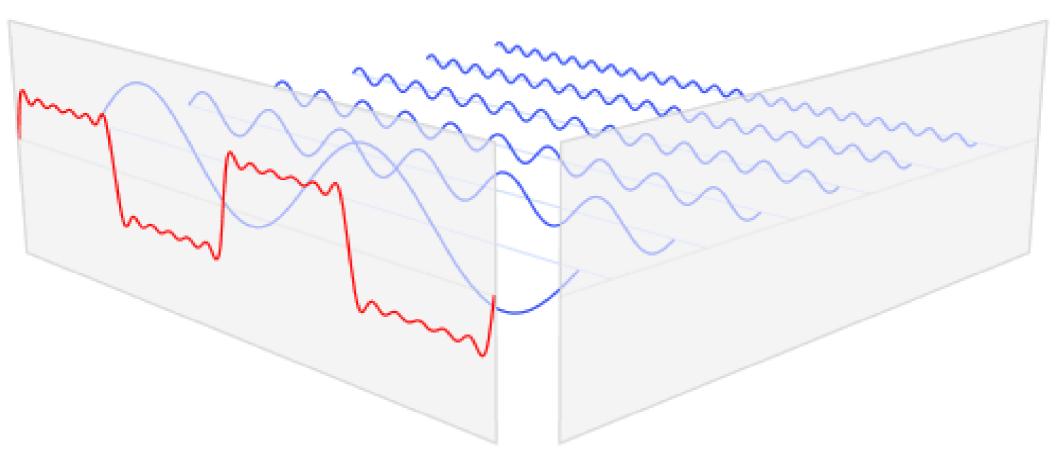
Transformada de Fourier

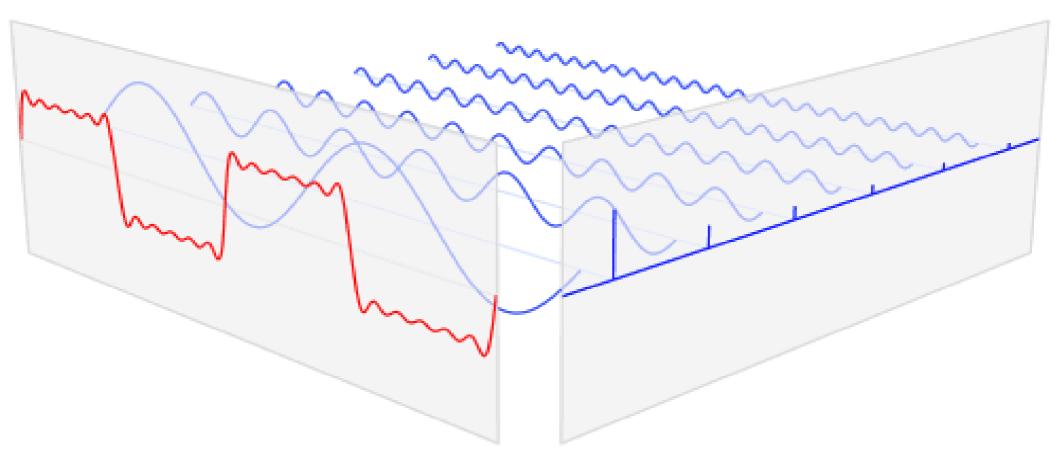
- Fourier generalizó dichas soluciones de la siguiente manera:
- Varias ondas sumadas entre si pueden ser utilizadas para representar cualquier señal periódica.
- Y así, se inventaron las Series de Fourier.

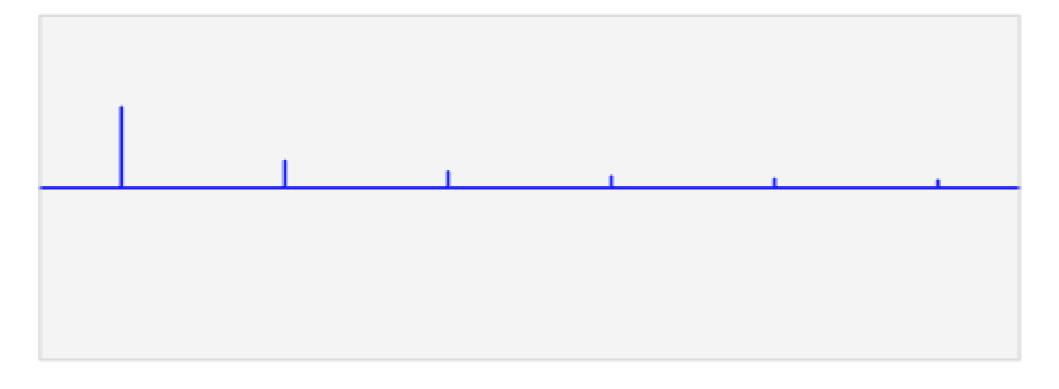


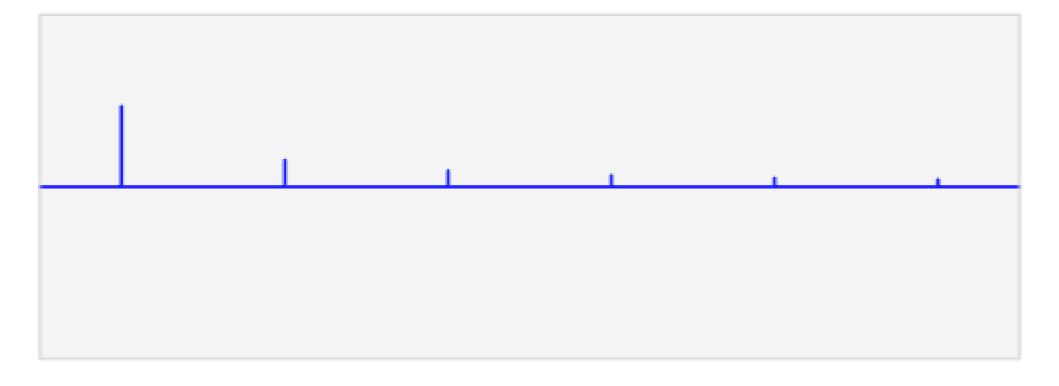
f

$$a_n \cos(nx) + b_n \sin(nx)$$

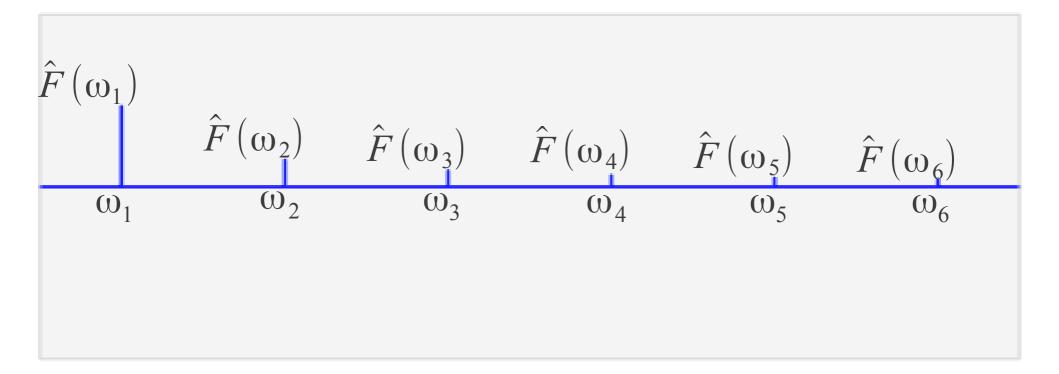








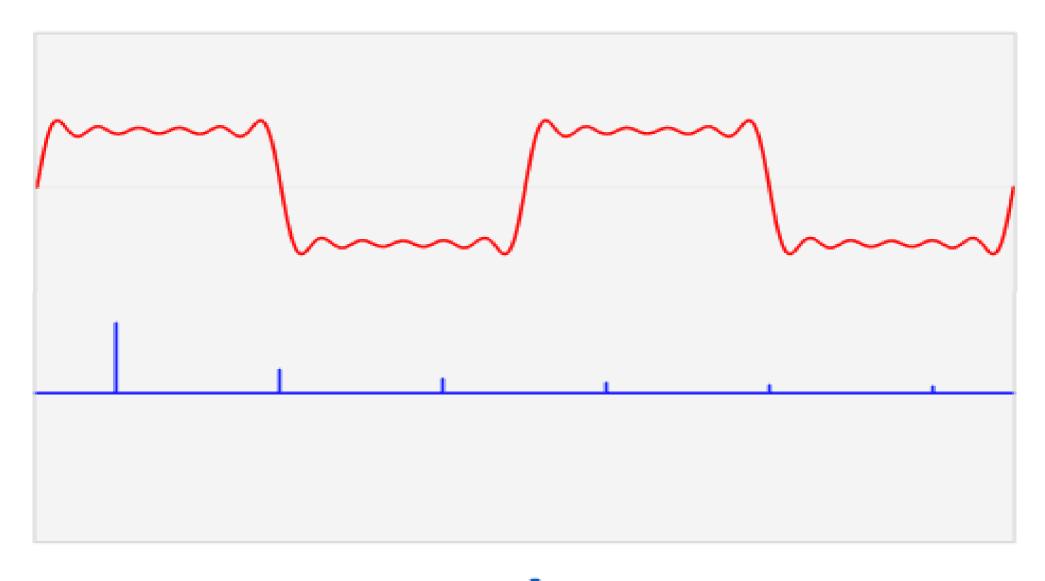
- F es la señal f transformada al dominio de la frecuencia.
- ω_n son las frecuencias de las ondas que, al sumarse, representan a f.
- $F(\omega_n)$ es la magnitud de la onda que oscila con frecuencia ω_n .



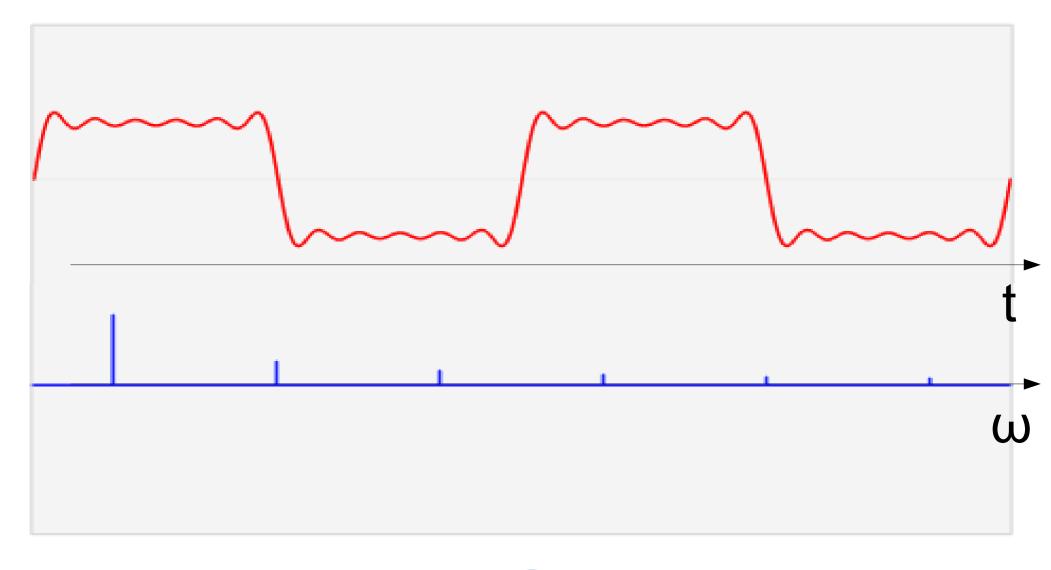
¿Para qué?

- Permite representar una señal, cualquier señal, en otro dominio.
- Es la misma señal, sólo que es vista de dos puntos de vista (o "dominio") diferente.

f

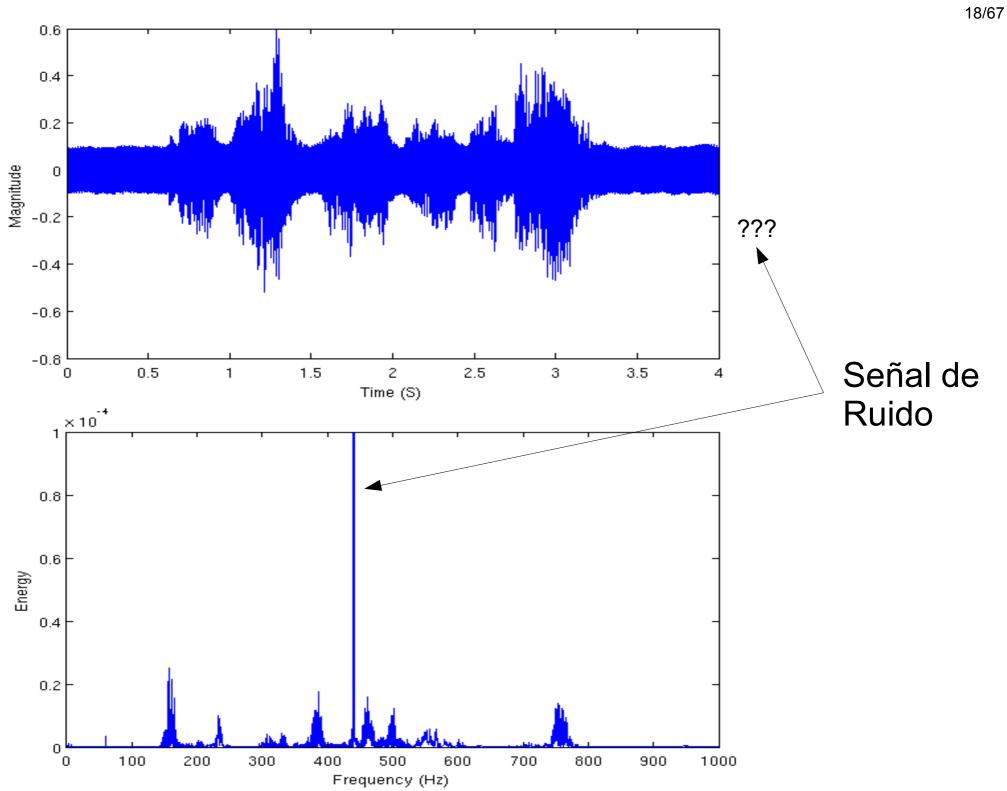


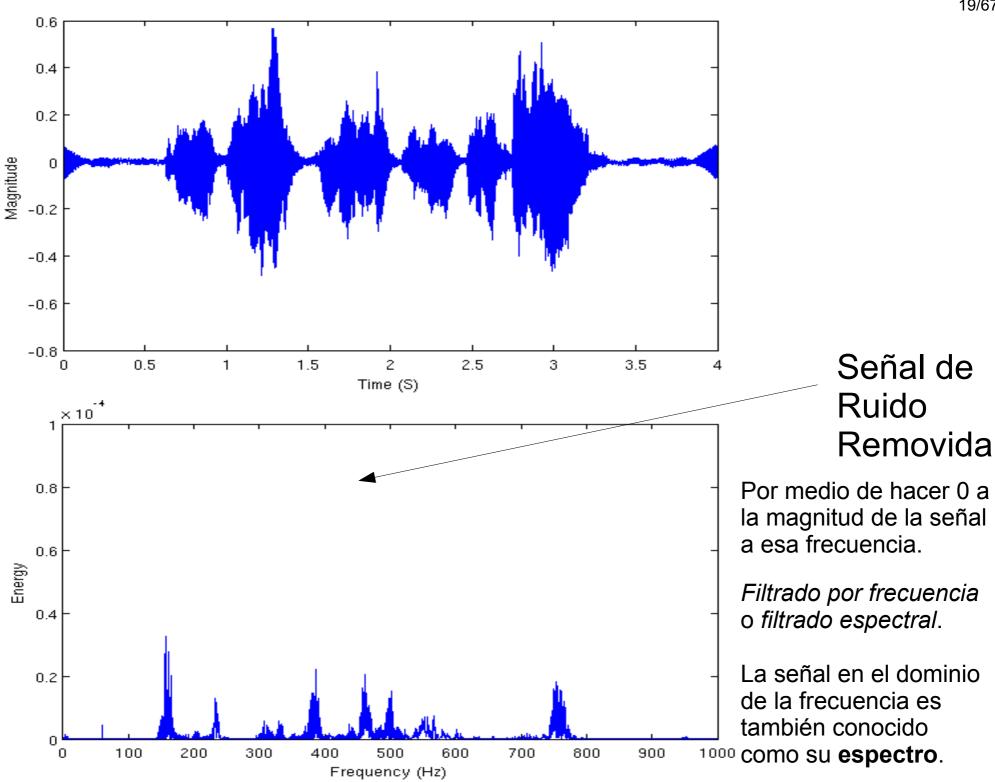
f



Pero, podemos hacer muchas cosas en el dominio del tiempo... es cómodo y bonito.

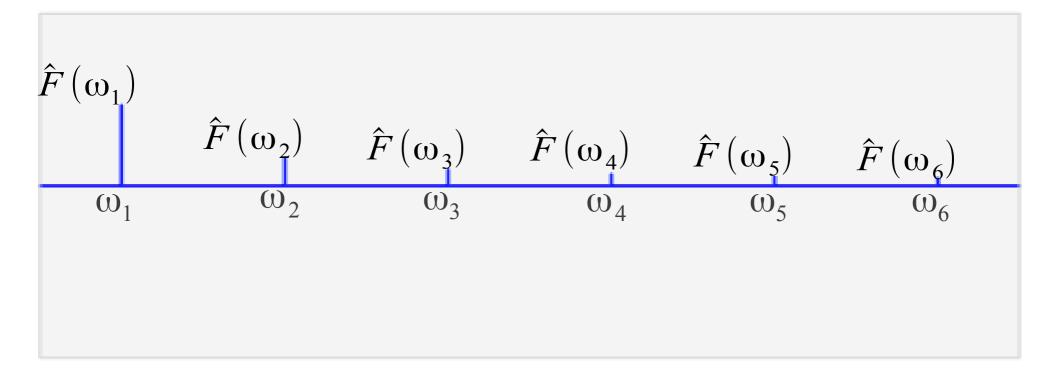
¿Para qué necesitamos irnos al dominio de la frecuencia?



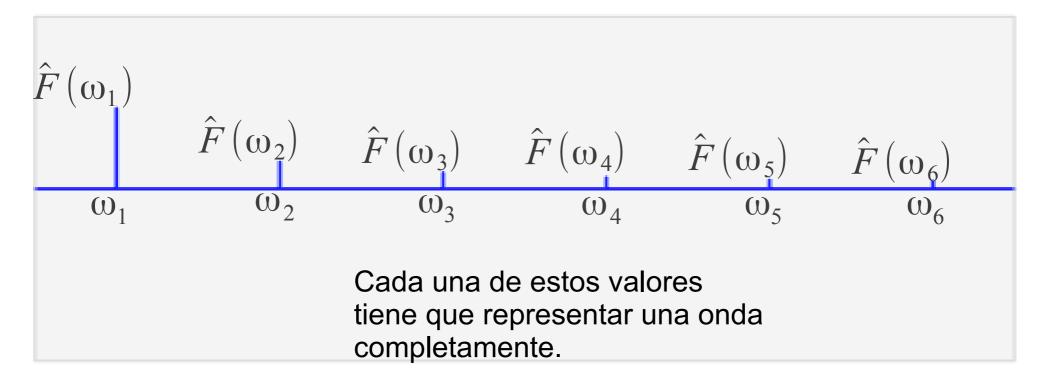


Representación de Ondas

- F es la señal f transformada al dominio de la frecuencia.
- ω_n son las frecuencias de las ondas que, al sumarse, representan a f.
- $F(\omega_n)$ es la magnitud de la onda que oscila con frecuencia ω_n .

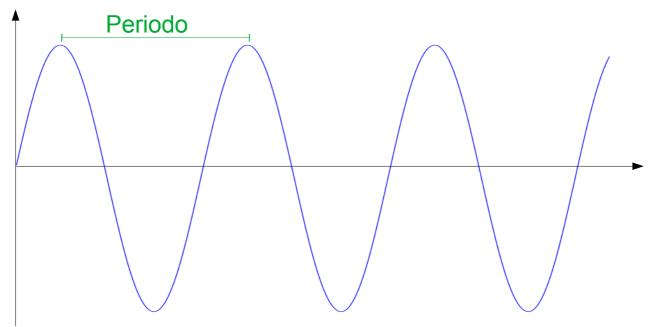


- F es la señal f transformada al dominio de la frecuencia.
- ω_n son las frecuencias de las ondas que, al sumarse, representan a f.
- $F(\omega_n)$ es la magnitud de la onda que oscila con frecuencia ω_n .



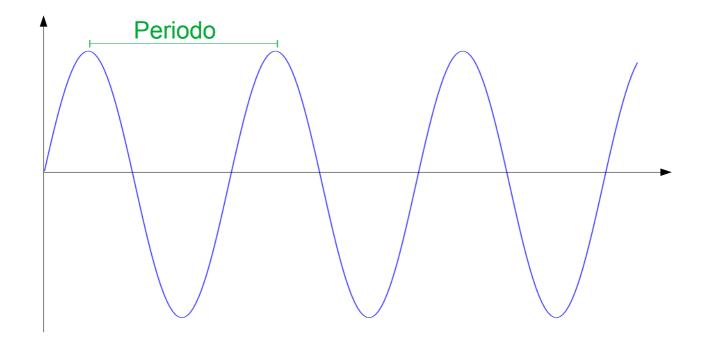
¿Qué es una onda?

 Es una señal periódica, que oscila a una frecuencia dada (lo cual depende de su longitud de onda, o periodo):



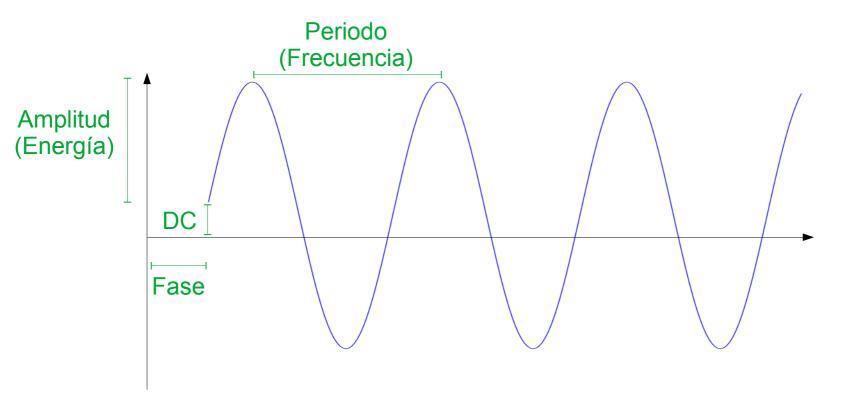
¿Cuáles son sus partes?

 Necesitamos poder definir una onda completamente. ¿Qué nos hace falta?



¿Cuáles son sus partes?

• Éstas son todas sus partes:



Representación de Ondas

 Una onda puede ser representada con un coseno, con un seno, o con un exponencial, ya que la fórmula de Euler indica que:

$$e^{ix} = \cos(x) + i\sin(x)$$

 Donde e es el número Euler, que es la base del logaritmo natural, y se calcula con la siguiente serie:

$$e = 1 + \frac{1}{1} + \frac{1}{1 \times 2} + \frac{1}{1 \times 2 \times 3} + \frac{1}{1 \times 2 \times 3 \times 4} + \cdots$$

• Se puede redondear a 2.71828.

Representación de Ondas

- Entonces, una onda f que:
 - Oscila a una frecuencia ω
 - Que tiene una amplitud c
 - Con un DC d
 - Y una fase θ
- Se puede representar así:

$$f(t) = c e^{i\omega t + \theta} + d$$

¿Una exponencial imaginaria?

- Hay varias razones:
 - A los(as) maestros(as) de señales y sistemas nos gusta torturar a estudiantes.
 - Como veremos después, representar una onda con exponenciales simplifica enormemente las ecuaciones de transformación.
 - Y, la exponencial puede representar otras cosas.

Exponencial Imaginaria: Tiempo

 Si la variable es tiempo, como habíamos dicho antes, la exponencial imaginaria representa una onda en el dominio del tiempo:

$$f(t) = c e^{i\omega t + \theta} + d$$

Exponencial Imaginaria: Frecuencia

 Si la variable es frecuencia, la exponencial imaginaria actúa como un operador de desfase :

$$F(\omega)e^{i\omega t_0} \rightarrow f(t+t_0)$$
 Donde dominion

Donde $F(\omega)$ es f(t) en el dominio de la frecuencia.

Exponencial Imaginaria: Muestreo

- La parte real del operador de desfase es un coseno, el cual comienza en la parte más alta de la onda.
- Al extraer solo la parte real de la señal después de la operación, obtenemos el valor en t=0. Es decir, es una forma de muestreo:

$$F(\omega)e^{i\omega t_0} = F(\omega)\cos(\omega t_0) + iF(\omega)\sin(\omega t_0)$$

Valor en t=0, después de haber desfasado t₀ segundos. Esto equivale a: **f(t₀)**

¿Qué es ω?

- Es la "frecuencia angular": radianes por segundo.
- Recordemos que el exponencial es realmente una sumatoria de un coseno y un seno que reciben como entrada un ángulo.

Relación entre ω y ζ

- La frecuencia en Hertz (ζ) representa periodos por segundo.
- Si cada periodo de una onda senoidal es 2π radianes, entonces:

$$\omega = 2\pi\zeta$$

Cálculo de la Transformada de Fourier

La Transformada es una Sumatoria

- Una señal discreta se puede considerar como un arreglo de muestras de energía.
- Por lo tanto, según Fourier, deberíamos de poder representar cualquier momento en el tiempo de una señal como una sumatoria de las energías en ese momento de otras señales periódicas.

Mapeo Formal de Frecuencia a Tiempo

$$f(t) = \frac{1}{N} \sum_{n=1}^{N} \hat{F}(\omega_n) e^{i\omega_n t}$$

Donde:

- · t es un momento en el tiempo en segundos
- · f(t) es la energía de la señal en el momento t
- · N es el número de señales periódicas con las cuales queremos representar a f(t)
- ω_{p} es la frecuencia número n
- $\cdot F(\omega_n)$ es una onda con frecuencia ω_n

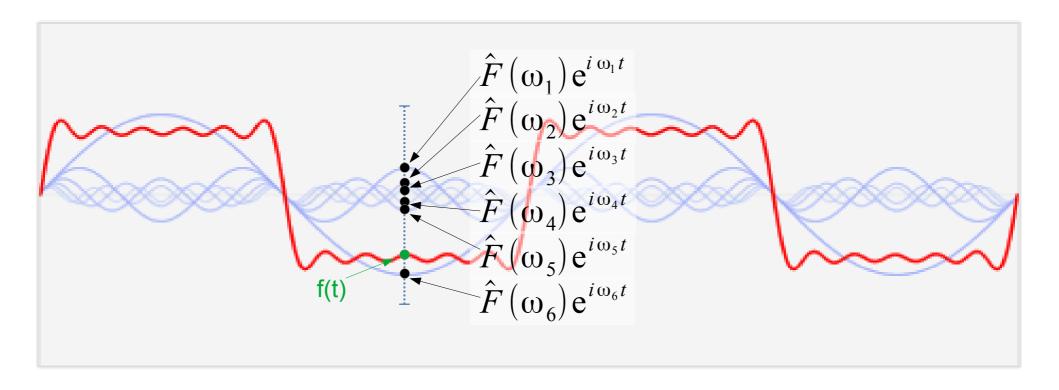
Mapeo Formal de Frecuencia a Tiempo

$$f(t) = \frac{1}{N} \sum_{n=1}^{N} \hat{F}(\omega_n) e^{i\omega_n t}$$

La exponencial imaginaria está "muestreando" a la onda $F(\omega_n)$ en el tiempo t.

Donde:

- · t es un momento en el tiempo en segundos
- · f(t) es la energía de la señal en el momento t
- · N es el número de señales periódicas con las cuales queremos representar a f(t)
- ω_{p} es la frecuencia número n.
- $\cdot F(\omega_n)$ es una onda con frecuencia ω_n .



¿Mapeo?

- El valor f(t) es cálculado con todos los valores del dominio de la frecuencia $F(\omega_n)$. Esto significa dos cosas:
 - El tamaño de la señal en el dominio de la frecuencia es la misma que en el dominio del tiempo.
 - Y como todo mapeo, se puede hacer en dirección inversa: calculando un $F(\omega_n)$ con todos los valores del dominio del tiempo f(t).

Mapeo Formal de Tiempo a Frecuencia

$$\hat{F}(\omega_n) = \frac{1}{T} \sum_{t=0}^{T} f(t) e^{-i\omega_n t}$$

Donde:

- · t es un momento en el tiempo en segundos
- · f(t) es la energía de la señal en el momento t
- · T es el tiempo final de f(t)
- ω_n es la frecuencia número n
- $\cdot F(\omega_n)$ es una onda con frecuencia ω_n

Mapeo Formal de Tiempo a Frecuencia

$$\hat{F}(\omega_n) = \frac{1}{T} \sum_{t=0}^{T} f(t) e^{-i\omega_n t}$$

¿Qué significa esto? ¿Qué rol está jugando la exponencial imaginaria?

Donde:

- · t es un momento en el tiempo en segundos
- · f(t) es la energía de la señal en el momento t
- T es el tiempo final de f(t)
- ω_n es la frecuencia número n
- $\cdot F(\omega_n)$ es una onda con frecuencia ω_n

La variable es tiempo...

$$\hat{F}(\omega_n) = \frac{1}{T} \sum_{t=0}^{T} f(t) e^{-i\omega_n t}$$

La exponencial imaginaria está actuando como una onda oscilando a frecuencia ω_n.

El resultado es el **producto punto** entre:

- · La señal a convertir, f(t)
- · Una onda oscilando a frecuencia ω_n
- Equivale a la contribución de la frecuencia ω_n en f(t).

Resultado: un número complejo que representa a la onda oscilando a esa frecuencia dentro de f(t).

Otra forma de verlo...

- La Transformada de Fourier tiene muchas interpretaciones.
- Una que me ha gustado mucho la pueden ver en un video de YouTube del canal 3Blue1Brown, titulado:
 - But what is the Fourier Transform? A visual introduction."
 - https://www.youtube.com/watch?v=spUNpyF58BY
- Hay una copia del video en la página del curso.
 - Como forma de respaldo, por si el video es removido.

Pero lo más impresionante: todo esto con solo cambiar un signo

$$f(t) = \frac{1}{N} \sum_{n=1}^{N} \hat{F}(\omega_n) e^{i\omega_n t}$$

$$\hat{F}(\omega_n) = \frac{1}{T} \sum_{t=0}^{T} f(t) e^{-i\omega_n t}$$

Versión Continua

- Lo que estamos viendo realmente es la Transformada Discreta de Fourier.
 - Ya que es la que nos es más relevante.
- Recordatorio: una sumatoria de los valores de un señal es equivalente a una integral (área bajo la curva).
- Por lo tanto, la versión Continua de esta transformada (la original) se puede obtener substituyendo las sumatorias por integrales.

Versión Continua

$$f(t) = \frac{1}{N} \int_{0}^{N} \hat{F}(\omega) e^{i\omega t} d\omega$$

$$\hat{F}(\omega) = \frac{1}{T} \int_{0}^{t} f(t) e^{-i\omega t} dt$$

Versión Continua (en Hertz)

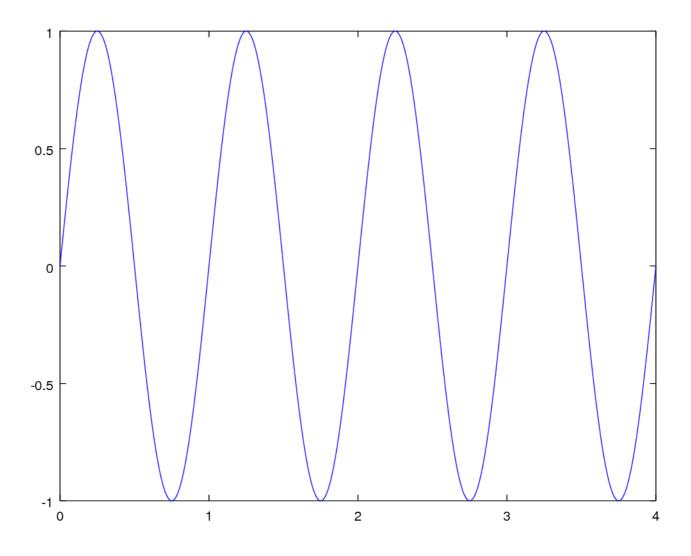
$$f(t) = \int \hat{F}(\zeta) e^{i2\pi\zeta t} d\zeta$$

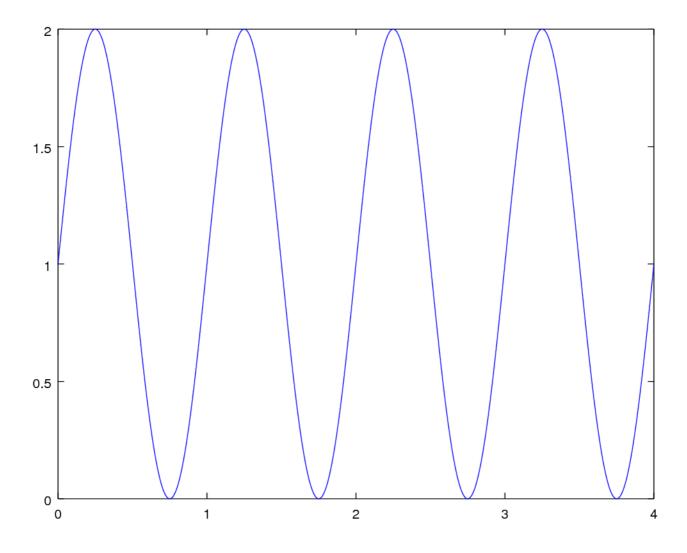
$$\hat{F}(\zeta) = \int f(t) e^{-i2\pi\zeta t} dt$$

$$\hat{F}(0) = \frac{1}{T} \sum_{t=0}^{T} f(t) e^{-i0t}$$

$$= \frac{1}{T} \sum_{t=0}^{T} f(t)$$

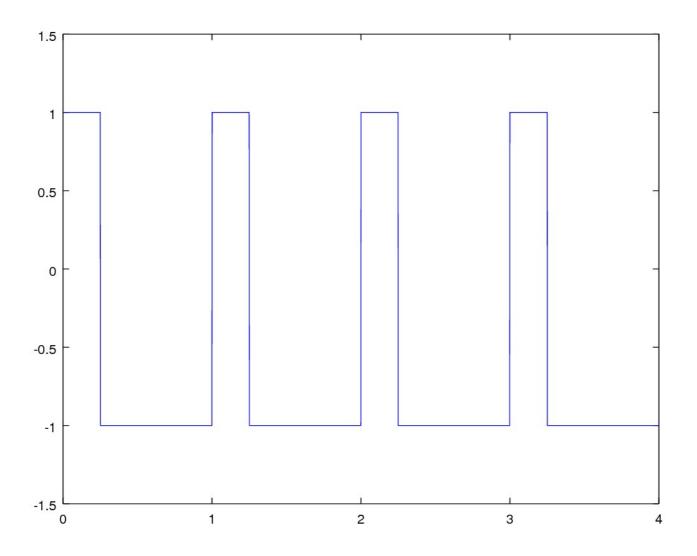
Es el promedio de la energía de la señal en el periodo.



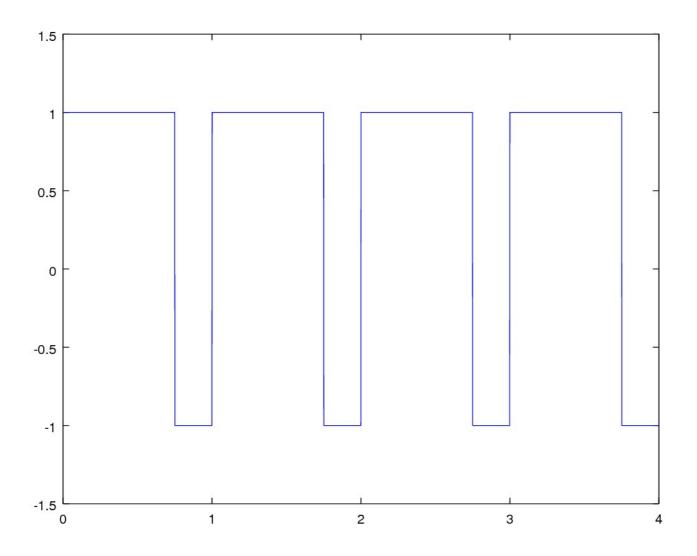




Ciclo de Trabajo: 50%



Ciclo de Trabajo: 25%



Ciclo de Trabajo: 75%

Propiedades de la Fórmula de Euler

$$e^{ix} = \cos(x) + i\sin(x)$$

$$e^{ix} + e^{-ix} = \cos(x) + i\sin(x) + (\cos(-x) + i\sin(-x))$$

$$= \cos(x) + i\sin(x) + \cos(-x) + i\sin(-x)$$

$$= \cos(x) + i\sin(x) + \cos(x) - i\sin(x)$$

$$= 2\cos(x)$$

$$\cos(x) = \Re(e^{ix}) = \frac{1}{2}(e^{ix} + e^{-ix})$$

Propiedades de la Fórmula de Euler

$$e^{ix} = \cos(x) + i\sin(x)$$

$$e^{ix} - e^{-ix} = \cos(x) + i\sin(x) - (\cos(-x) + i\sin(-x))$$

$$= \cos(x) + i\sin(x) - \cos(-x) - i\sin(-x)$$

$$= \cos(x) + i\sin(x) - \cos(x) + i\sin(x)$$

$$= i2\sin(x)$$

$$\sin(x) = \Im(e^{ix}) = \frac{1}{i2}(e^{ix} - e^{-ix})$$

Propiedades de la Fórmula de Euler

$$\cos(x) \cdot \cos(y) = \frac{1}{2} (e^{ix} + e^{-ix}) \cdot \frac{1}{2} (e^{iy} + e^{-iy})$$

$$= \frac{1}{4} (e^{ix} e^{iy} + e^{ix} e^{-iy} + e^{-ix} e^{iy} + e^{-ix} e^{-iy})$$

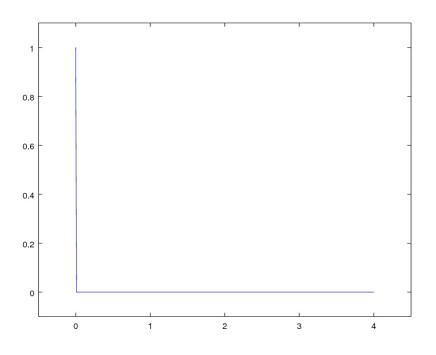
$$= \frac{1}{4} (e^{i(x+y)} + e^{i(x-y)} + e^{-i(x+y)} + e^{-i(x-y)})$$

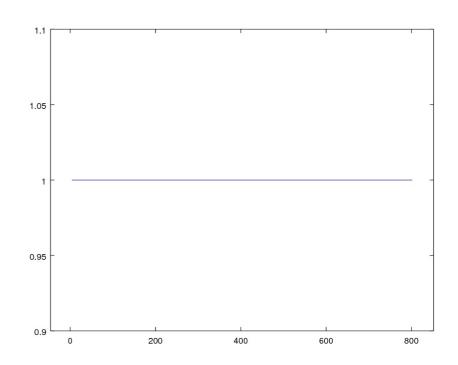
$$= \frac{1}{4} (e^{i(x+y)} + e^{-i(x+y)} + e^{i(x-y)} + e^{-i(x-y)})$$

$$= \frac{1}{2} (\frac{1}{2} (e^{i(x+y)} + e^{-i(x+y)}) + \frac{1}{2} (e^{i(x-y)} + e^{-i(x-y)}))$$

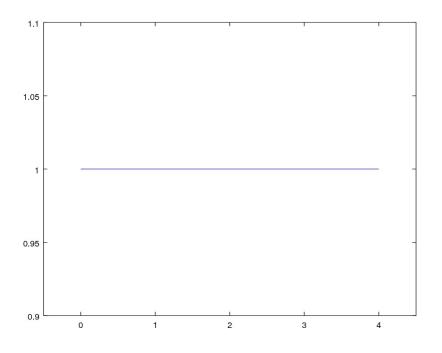
$$= \frac{1}{2} (\cos(x+y) + \cos(x-y))$$

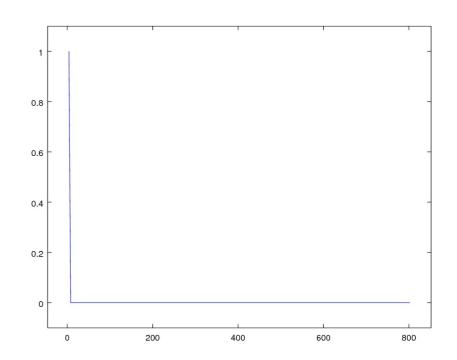
$$\delta(t) \rightarrow F \rightarrow 1$$

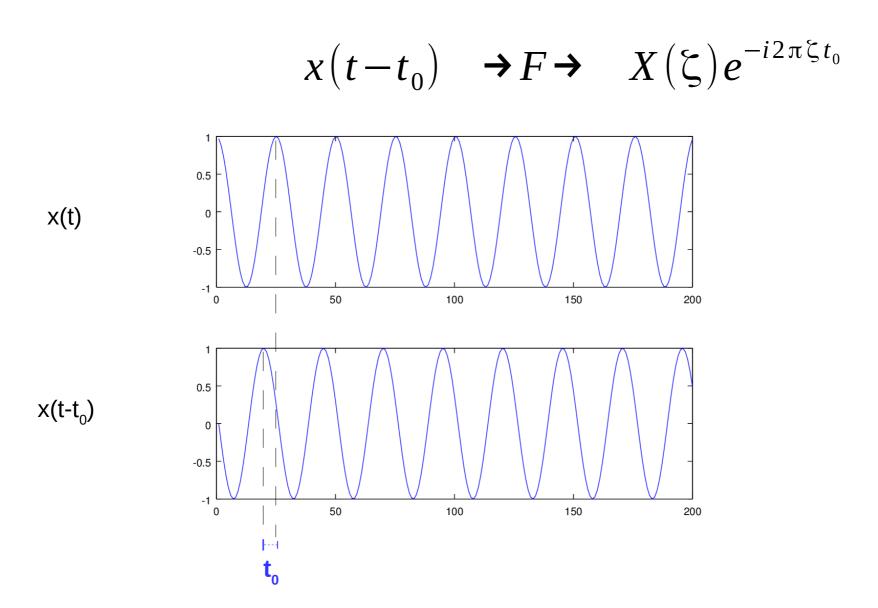




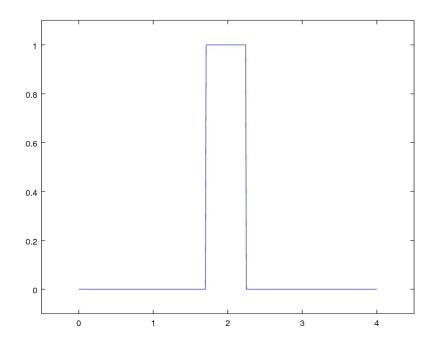
$$1 \rightarrow F \rightarrow \delta(\zeta)$$

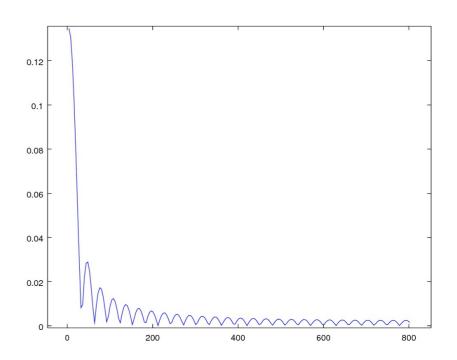




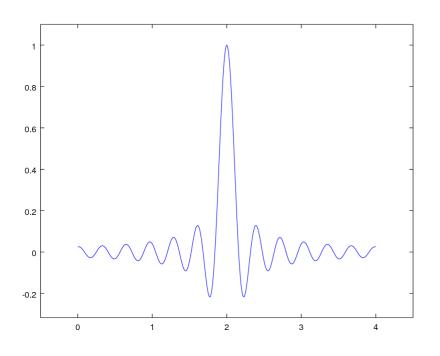


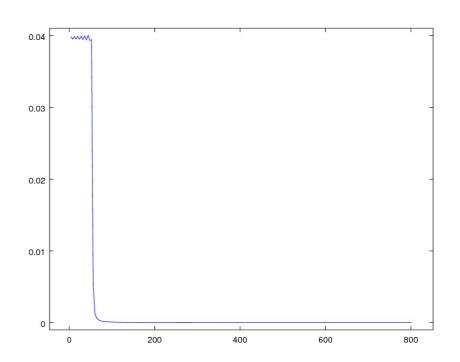
$$rec(t) \rightarrow F \rightarrow sinc(\zeta)$$



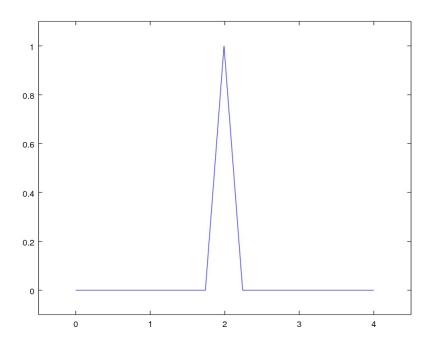


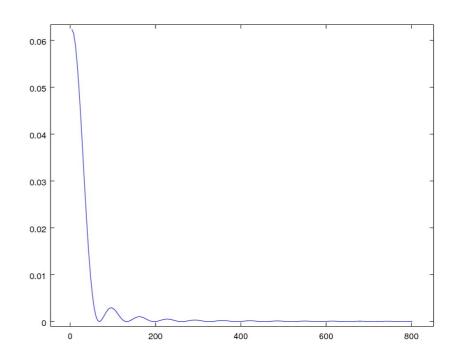
$$sinc(t) \rightarrow F \rightarrow rect(\zeta)$$





$$tri(t) \rightarrow F \rightarrow sinc^{2}(\zeta)$$





Guassiana

$$e^{-At^2} \rightarrow F \rightarrow \sqrt{\frac{\pi}{2}} e^{-(\pi \zeta)^2/A}$$

Convolución

$$x(t)*y(t) \rightarrow F \rightarrow X(\zeta)Y(\zeta)$$

Correlación

$$Corr(x(t), y(t)) \rightarrow F \rightarrow X(\zeta)Y^{H}(\zeta)$$

Escala de Tiempo

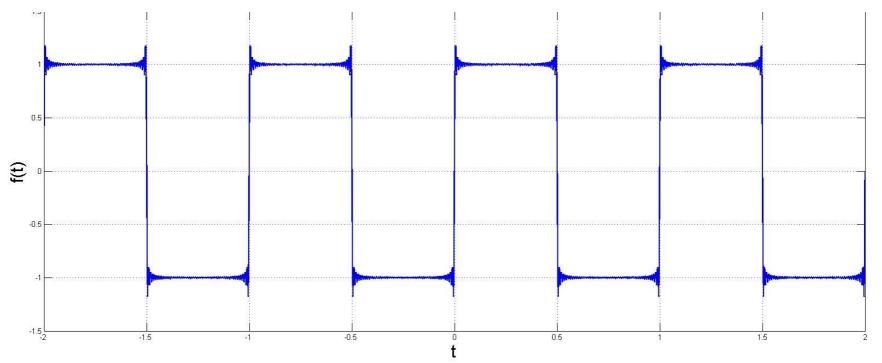
$$x(At) \rightarrow F \rightarrow \frac{1}{A}X(\zeta/A)$$

Algunas Consideraciones

- Las series de Fourier pueden representar cualquier señal periódica.
- La transformada de Fourier asume que los datos de tiempo que se le entrega es realmente el **periodo** de una señal con longitud infinita, y es ésta la que se quiere transformar al dominio de la frecuencia.

Algunas Consideraciones

- La transformada de Fourier puede transformar señales discontinuas:
 - Aunque, esto resulta en aproximar la discontinuidad insertando componentes de alta frecuencia.



Algunas Consideraciones

- Sólo tiene una limitante del tipo de señal que puede transformar:
 - Que tenga energía finita.
 - Si fuera infinita, sería imposible calcular el componente DC.

Siguiente Tema:

Aspectos Prácticos de la Transformada de Fourier