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value. Thus, we might expect that the true value is 0.81
(0.7/0.865). In both cases we expect that the true MSC is
in about the 0.7 to 0.8 range, but our estimates varied from
0.4 to 0.7 because of misalignment when estimating the MSC.

IV. CONCLUSION

In conclusion, we see that even with a large number of FFT
segments, estimates of the magmtude-squared coherence can
be significantly biased downward, giving an erroneous indica-
tion of the value of the coherence. When the data are realigned
and processed, estimates of the coherence are informative
descriptors of the extent to which the ocean channel can be
modeled by a linear time-invariant filter.
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A Weighted Overlap-Add Method of Short-Time Fourier
Analysis/Synthesis

R. E. CROCHIERE

Abstract—In this correspondence we present a new structure and a
simplified interpretation of short-time Fourier synthesis using synthesis
windows. We show that this approach can be interpreted as a modifica-
tion of the overlap-add method where we inverse the Fourier transform
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and window by the synthesis window prior to overlap-adding. This
simplified interpretation results in a more efficient structure for short-
time synthesis when a synthesis window is desired. In addition, we
show how this structure can be used for analysis/synthesis applications
which require different analysis and synthesis rates, such as time com-
pression or expansion.

I. INTRODUCTION

The concepts of short-time Fourier analysis and synthesis
have been widely used for analyzing and modeling quasi-
stationary (slowly time-varying) signals, such as speech. These
concepts have evolved from two fundamental points of view.

One point of view is basically that of a filter-bank model.
The input signal is filtered by a bank of bandpass filters which
span the frequency range of interest. The outputs of the band-
pass filters can then be used to define a short-time Fourier
spectrum. This model is the basis for the phase vocoder de-
veloped by Flanagan and Golden [1]. In the synthesis pro-
cedure a signal can be reconstructed from its short-time
Fourier spectra by summing the outputs of the bandpass
filters. This method of analysis and synthesis is referred to as
the filter-bank summation method. In practice, since the out-
put signals from the filter bank are narrow-band signals, they
can be sampled at a lower sampling rate than the initial input
signal and interpolated back to a high sampling rate for
synthesis.

The second point of view is basmally that of a block-by-
block analysis in time. The input signal is time windowed into
overlapping finite duration time segments [8]. Each segment
is then Fourier transformed to give a short-time Fourier spec-
trum. Schafer and Rabiner showed how this analysis tech-
nique can be efficiently implemented using the FFT algorithm
[2]. Allen [3] carefully discussed a method of synthesizing a
signal from its short-time Fourier spectra by inverse transform-
ing each sample of the short-time spectra to recover the short-
time segments of the signal in time. These overlapped signal
segments are then appropriately summed (overlapped and
added) to reproduce the time signal. This method is referred
to as the overlap-add synthesis method.

More recently, Allen and Rabiner compared the effects of
modifications of the short-time spectrum in the filter-bank
summation and overlap-add methods. Portnoff [5], [9] has
fully developed the use of a synthesis window and has de-
veloped general expressions for short-time analysis/synthesis
using distinct analysis and synthesis windows [6], [9]. He has
proposed an implementation of short-.ume synthesis based on
the FFT algorithm in which inverse transformed short-time
Fourier spectra are appropriately interpolated by the synthesis
filter to obtain the desired reconstructed output. In this paper
we ~“how that Portnoff’s windowed synthesis procedure can be
greatly simplified and that it can be implemented in the form
of a weighted overlap-add procedure of short-time synthesis.
In this technique the short-time spectra are inverse trans-
formed to produce the short-time signal segments. These
short-time signal segments are weighted by the synthesis win-
dow. They are then overlapped and added in a manner similar
to the overlap-add synthesis procedure. The synthesis window
has the same effect in the synthesis procedure of the filter-
bank summation method.

Thus, two principle methods of implementation (or interpre-
tation) of short-time Fourier analysis/synthesis can be readily
defined (various modifications of these two basic methods, of
course, can be generated). They are the filter-bank summation
method with decimation (reduced sampling rate) and interpola-
tion in each channel, and the weighted overlap-add method
in which the input of the discrete Fourier transform is win-
dowed by the analysis window and the output of the inverse
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transform is windowed by the synthesis window in the manner
to be described in this paper. Both methods are completely
general in terms of implementating arbitrary analysis and syn-
thesis windows (filters) and they are mathematically identical
and interchangeable (assuming the analysis and synthesis win-
dows are appropriately defined). The mathematical basis is
similar to that of Portnoff [6] and, depending on the specific
synthesis windows defined, the methods of filter-bank sum and
overlap-add analyzed by Allen [3] and Allen and Rabiner [4]
result.

II. REVIEW OF THE MATHEMATICAL FRAMEWORK FOR
SHORT-TIME ANALYSIS/SYNTHESIS

As stated above, the mathematical framework considered
here is similar to that derived by Portnoff—only the interpreta-
tion of the DFT synthesis procedure is changed. Therefore,
the notation that we will use is similar to Portnoff’s, with
small changes for convenience, and we refer to [6] for details
of the derivations.

A. Analysis

The discrete short-time Fourier transform of a signal x(m),
sampled at equispaced frequencies every R samples in time
m is commonly defined in the form

X (RY= 2. h(sR- m)x(m)W;"* (1)
Frp = — 00
where
Wy = el 2™ (2)

M is the number of frequency samples, k is the discrete fre-
quency index, A () is the analysis window, and s denotes the
time index of the short-time transform at the decimated sam-
pling rate (decimated by the integer factor R).

By a change of variables r = m - sR, (1) can be modified to
the form

Xp(R)= . h(-r)x(r+sR) W SR+ Nk

Jy=—co

= W, 5% X1 (sR) (3)

where X (sR) is the short-time transform referenced to a
fixed time origin m =s = 0 and X, (sR) is the short-time trans-
form referenced to a linearly increasing (sliding) time reference
m = sR, which corresponds to the origin of the sliding analysis
‘window. As seen by (3), these two short-time transforms are
related by a linear phase component and their magnitudes are
identical. The short-time transform X (sR) can be expressed
in the DFT form

M-1

X (RY= D x,(sR) W (4)
m=0
where X;,, (sR) is the time-aliased signal
XpnR)Y= D x(sR +IM+m)h(-IM - m). (5)

] =—c0

The interpretation of this time-aliased signal will become more
clear in the next section.

Since a linear phase shift in the DFT frequency domain cor-
responds to a circular or modulo rotation in the time domain,
X (sR) can also be defined as the DFT of the circularly ro-
tated version of x,,(sR), i.e.,
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M-1

X (R)= 3 x,(sR) W;¥ (6)
m=0
where
X (SR) = X ((m-sR)) g (sR) (7)

and where ((n));; denotes n reduced modulo M. Equations
(1)-(7) define the basic mathematical framework for short-
time analysis.

B. Synthesis

The synthesis of a signal X(n), from its discrete short-time

transform X 1(sR"), sampled every R’ samples in time n, can
be obtained from the following generalized synthesis formula
{6, (3.16)]

N = 1 M1 ,
)= 2. fn-sR" }EZ R (R Wik

§=-—00 k=0

(8)

where f(n) defines the synthesis window, The conditions on
the windows (filters) f(n) and 2(n), in order to achieve an ex-
act resynthesis, are derlved in [6]. By defining %\n (sR)) as
the inverse DFT of (SR, i.e.,

1 M-1 , "
X,(sR") = }1}_ o k(SR ) Wit (%)
(8) becomes
x(n) = Z fin- sR" xn(sR ). (10)

y=—c0

In a manner similar to that in the analysis stage, a short-time
transform X k(sR') can be defined as

£ GR) = WiR* X, (sR") (1)

and it corresponds to the short-time transform referenced to
the linearly increasing (sliding) time frame n =sR’'. The in-

verse transform of X;(sR') can be defined as X,(sR'), and
from (11) and the relation between linear phase shift in the
DFT frequency domain [used to derive (7)] it can be shown
that

Xp(sR') = J/E((n+ sR'))M(SR'), (12)
or equivalently

.;C\H(SR') = %\((H_SR'))M(SR'). (13)
Applying (13) to (10) gives

.;C\(n)z Z f(n— SRI) g((n“SRI))M(SR’}' (14)

$= 00

Thus it is seen that at the time reference n replaced by n +
soR'the s term in (14) contributes a component f(»n) xn (soR")
to the time shifted signal x(n + sqR’). It should be noted that
each term in the sum of (14) is itself a sequence in n, with
each term concentrated in a different region of the n axis.
This form will be useful in the next section to define the
weighted overlap-add synthesis procedure.

III. WEIGHTED OVERLAP-ADD IMPLEMENTATION OF
SHORT-TIME ANALYSIS/SYNTHESIS

With the above mathematical framework, we can now illus-
trate the weighted overlap-add implementation. To perform
the analysis we first select the appropriate section of the input
signal and window it by the analysis window. We will assume
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|
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X (SR)
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Fig. 1. (a) Generation of the short-time signal x,,(sR) by windowing
and circulary shifting by M/2 samples. (b) An equivalent method
based on a phase modification of the DFT.

that the duration of h(m) is less than M where M is the trans-
from size (assumed to be even). We select a block of M sam-
ples (x(m + sR - M/2), m=10,1,2, -+-, M~ 1) and window
the block by h(-m), as seen in Fig. 1(a), such that #(0) aligns
with the m = M/2 sample in the block. Assuming that 2(m) is
a symmetric zero-phase (odd number of taps) FIR window and
that we wish to align the center sample of the window to the
first sample of the transform, the.windowed signal can be cir-
cularly rotated by M/2 samples as seen in Fig. 1(a). The re-
sulting signal corresponds to the short-time signal x,,(sR)
according to (5), and its DFT corresponds to Xy (sR). Since
a circular shift by M/2 samples corresponds to a phase shift of
exp (-j2rk (M/2)/M) = (-1)%, an alternate form of this imple-
mentation is shown in Fig. 1{b).

The upper part of Fig. 2 shows the overall implementation
of the short-time analysis based on (3)-(7) and on the inter-
pretation in Fig. 1(b). The input signal is buffered with an M
sample buffer. The contents of the buffer are copied every R
samples and windowed by the analysis window A(—m). This
windowed segment of speech is transformed to give the short-
time Fourier transform in the sliding time reference as de-
scribed above and in Fig. 1. It is then multiplied by the phase
factor (- 1)"w SRE to convert it to the fixed time reference.

From (8)—--(14) a similar inverse synthesis structure can be
derived, as shown in the lower part of Fig. 2. The short-time

transform X k(sR ) is first multiplied by WSRk according to
(11) to convert it from a fixed time reference to the linearly
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Fig. 2. A weighted overlap-add proeedure for short-time Fourier
analysis/synthesis using linear phase modification in the frequency
~ domain,

increasing time referenced short-time transform f SR, It
is then multiplied by (- 1)* to account for the circular rotation
in the time domain by M/2 samples (i.e., the inverse operation
to that shown in Fig. 1). The resulting phase-shifted signal is
then inverse transformed and windowed by the synthesis win-
dow. These inverse-transformed windowed short-time signals
are then summed into the output buffer in an overlap-add
manner according to (14). At the synthesis (block) time sq,
the 5o term in (14) is summed into the output buffer. The
resulting structure is seen in the lower part of Fig. 2.

The overall structure of Fig. 2 is seen to be a modification
of the overlap-add structure. Input samples x(n) are shifted
into the input buffer in blocks of R samples and samples of
the output signal x(n) are shifted out of the output buffer in
blocks of R’ samples, with zero valued samples filling in the
rightmost R’ samples of the output buffer. The entire struc-
ture is implemented in a block-by-block manner with the
operations between the two buffers being performed once per
block.

Note that for generality we have allowed R and R’ to be dif-
ferent. This can be useful in applications such as time expan-
sion or compression where the input and output rates may be
different [6].

If the operation of the phase modification in Fig. 2 is com-
mutable with the short-time spectral mod1f1cat10n then it is

possible to replace the phase modifications (- 1) Wiy SRE and
- 1)* W;fk with a single phase modification of the form

WS(R -R)k, Furthermore, if R' = R, the phase modifications
can be eliminated entirely and the spectral modifications can
be made directly on the short-time transform in the sliding
time reference (again only if the phase modification and spec-
tral modification operations are commutable).

By using the fact that multiplication by a linear phase shift
in the DFT frequency domain corresponds to a circular rota-
tion in the time domain, the alternate analysis structure of
Fig.1(a) results. Slrmlary, an alternate synthesis structure can
be defined in which X k(sR ) is flrst inverse transformed and
then circularly rotated by ((n + sR’ + M[2))p; samples accord-
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Fig. 3. The filter-bank summation interpretation of short-time Fourier
analysis/synthesis.

ing to (12) to give X,,(sR "} (multiplies by Wﬁ,}R ~R)& Lan also
be implemented with a circular shift). This signal is then
weighted by f(n) and overlap-added into the output buffer in
the same manner as in Fig. 2.

The advantages of the implementation of Fig. 2 of the short-
time synthesis over the structure proposed by Portnoff [5],
[6] is that it requires substantially less internal storage of data
and it is more easily programmed. Only M samples of partial
sums of products in the overlap-add output buffer need be
stored, as opposed to requiring the storage of many inverse
transformed short-time segments. The number of actual arith-
metic operations, however, is the same as that of Portnoff’s
(assuming the alternate method of circular rotation is used in
place of the phase modification).

Another advantage of the implementation of Fig. 2 is that it
clearly shows the relationship of the filter-bank synthesis
method to that of the overlap-add synthesis method. For this
reason we refer to this method as a weighted overlap-add tech-
nique. If an M point rectangular synthesis window is used,
then the synthesis method is identical to the overlap-add tech-
nique proposed by Allen [3].

IV. RELATIONSHIP TO THE MODIFIED FILT_ER—BANK
SUMMATION METHOD

An alternative interpretation of short-time analysis/synthesis
is that of the modified filter-bank summation approach shown
in Fig. 3. Since this structure is derived from the same mathe-
matical framework as the weighted overlap-add structure, it is
clear that they are equivalent structures. The values X (sR) in
Fig. 3 are identical to those in Fig. 2. Both structures can im-
plement arbitrary analysis and/or synthesis windows. In the
case where R =R’ =1 and f(n) = 8(n) (a unit pulse, §(n) = 1
for n=0, and 6(n)=0 for n * 0), it can be seen that the
modified filter-bank summation method becomes identical to
the filter-bank summation approach discussed by Allen and
Rabiner [4].

It is also interesting to note that if we take the transpose of
either of the structures of Fig. 2, or Fig. 3, the structures re-
main the same; however, the roles of the analysis and synthesis
windows and R and R’ are interchanged. This is consistent
with the concepts of transposition of linear time varying sys-
tems discussed by Claasen and Mecklenbrauker [7].
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V. CONCLUSION

In this paper we have proposed a weighted overlap-add im-
plementation of short-time analysis/synthesis. The advantages
of this scheme are that it is more efficient, in terms of storage,
and easier to program than the method used by Portnoff. It
also clearly illustrates the relationship between the weighted
overlap-add and the filter-bank summation methods of short-
time analysis/synthesis using arbitrary analysis and synthesis
windows. We have also attempted to point out the differences
between the sliding and the fixed time references which are
often confused in these methods. The basic mathematical
framework is similar to that derived by Portnoff, including ef-
fects of short-time modification—only the interpretation of
the structure is different.
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Generating Covariance Sequences and the Calculation of
Quantization and Rounding Error Variances in Digital Filters
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Abstract—A linear algorithm is given for the generation of covariance
sequences for rational digital filters using numerator and denominator
coefficients directly. There is no need to solve a Lyapunov equation or
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