Separación de Fuentes:

Beamforming

Modelo de las Señales Capturadas

 Se asume que hay una o varias señales de interes (SOI), con direcciones de arribo conocidas, tal que:

$$\mathbf{A}_{\mathbf{f}} = \begin{bmatrix} e^{-i2\pi f T_{1:1}} & e^{-i2\pi f T_{1:2}} & \cdots & e^{-i2\pi f T_{1:D}} \\ e^{-i2\pi f T_{2:1}} & e^{-i2\pi f T_{2:2}} & \cdots & e^{-i2\pi f T_{2:D}} \\ \vdots & \vdots & \ddots & \vdots \\ e^{-i2\pi f T_{M:1}} & e^{-i2\pi f T_{M:2}} & \cdots & e^{-i2\pi f T_{M:D}} \end{bmatrix}$$

$$\mathbf{S}_{\mathbf{f}} = \begin{bmatrix} s_1(f) \\ s_2(f) \\ \vdots \\ s_D(f) \end{bmatrix}$$

Donde:

$$X_f = A_f S_f$$

s_d: señal de origen "d"

N: tamaño de la señal (o de la ventana de la señal)

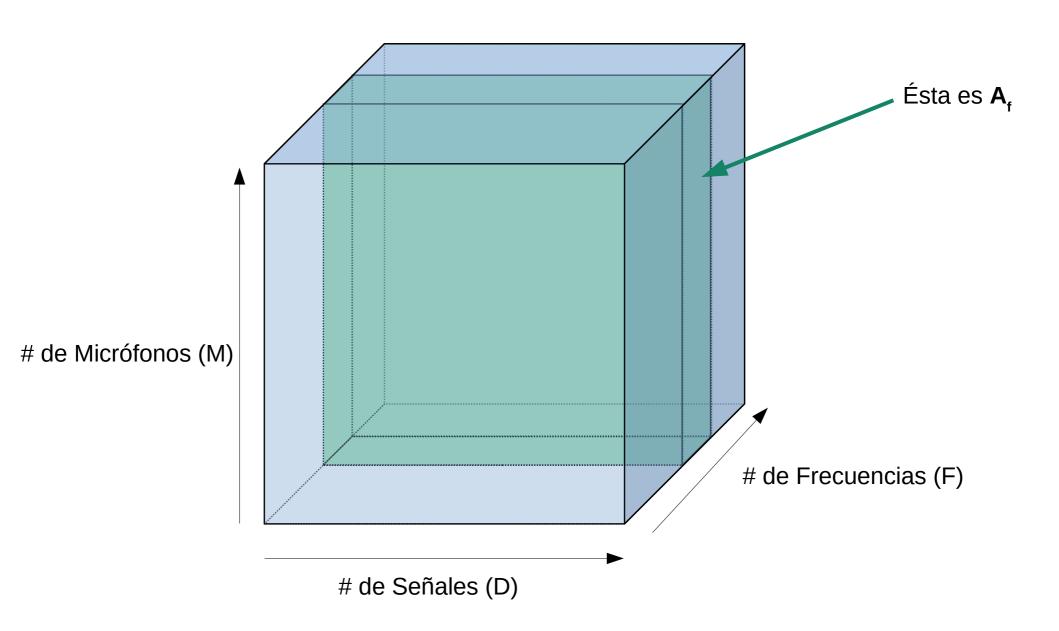
T_{m:d}: retraso recibido de la señal s_d en el micrófono m

A_f: matriz que contiene los vectores de dirección *para la frecuencia f*

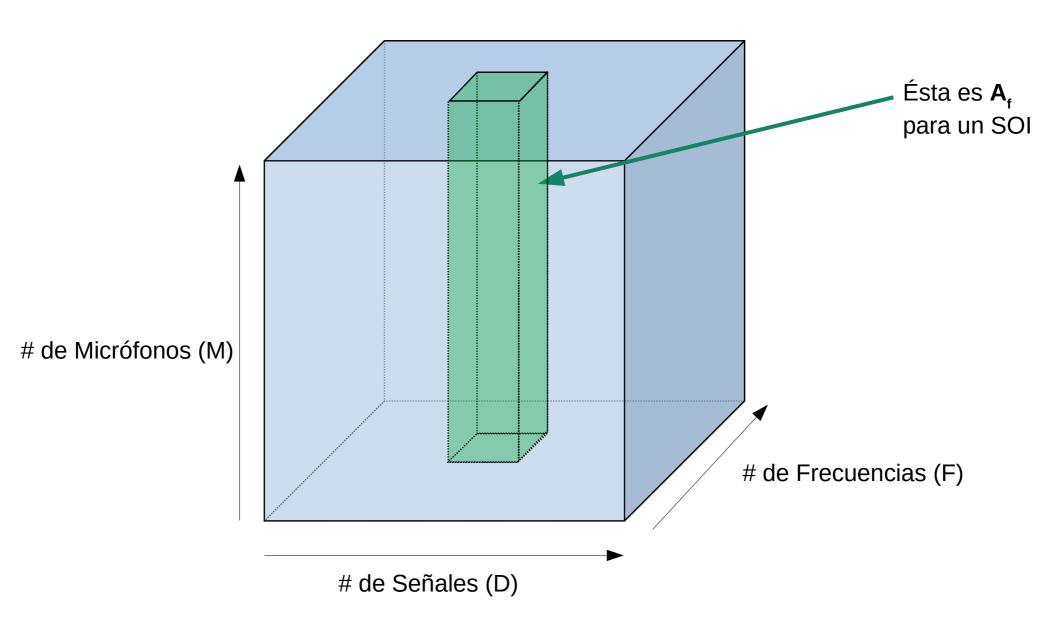
X₊: señales capturadas *en la frecuencia f*; cada renglón representa un micrófono

S_.: señales de origen *en la frecuencia f*; cada renglón representa una señal de origen

RECORDATORIO



Para cada SOI, Para cada Frecuencia



Objetivo

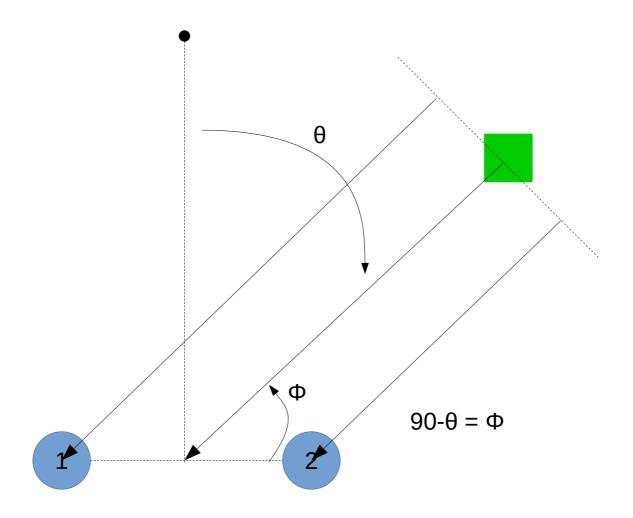
 Estimar las señales en S por medio de aplicar una matriz adicional W a X.

$$\hat{S}_f = W_f X_f$$

Relación entre A y W

- Es muy tentador decir que W = A-1.
- Y la solución es bastante cercana a ello.
- Pero, es importante primero saber qué significa llevar a cabo Beamforming.

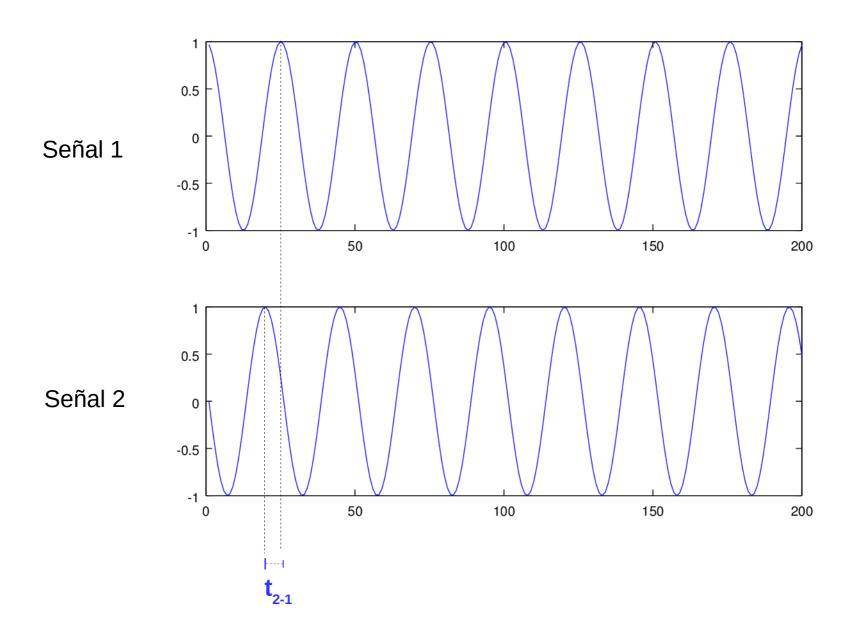
Beamforming



Beamforming

- En esta parte del procesamiento, asumimos que ya conocemos el DOA de la fuente.
- Por lo tanto, también ya también conocemos el desfase que necesitamos llevar a cabo en una de las señales para que "se parezcan lo más posible".

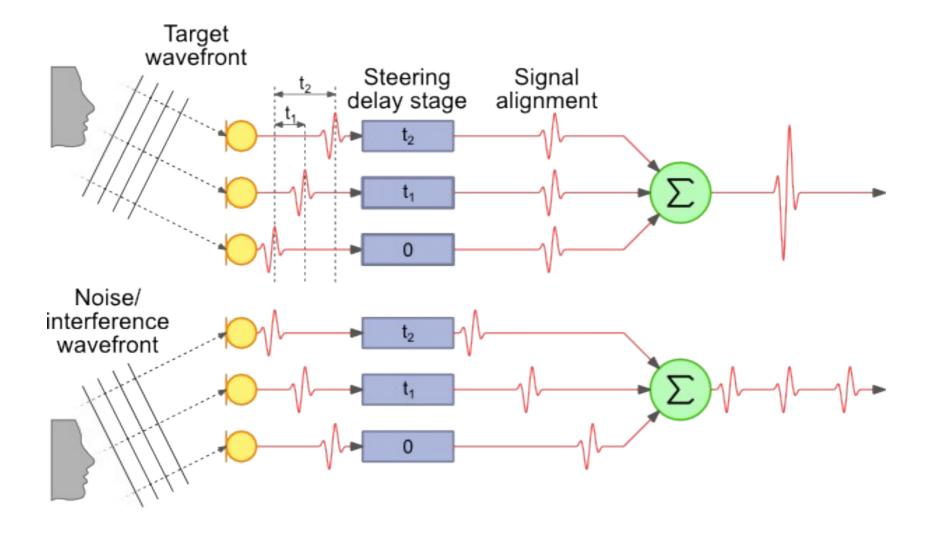
Desfase



Desfase

- ¿Qué sucedería si desfasáramos la segunda señal acorde a éste DOA y luego sumáramos las dos señales (después de desfasar)?
- ¿Qué sucedería si hubiera una segunda fuente interferente?

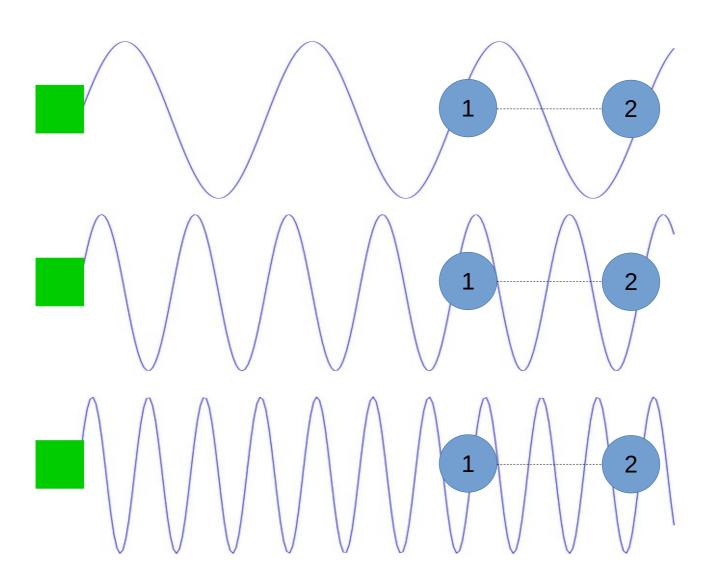
Delay-and-Sum Beamforming



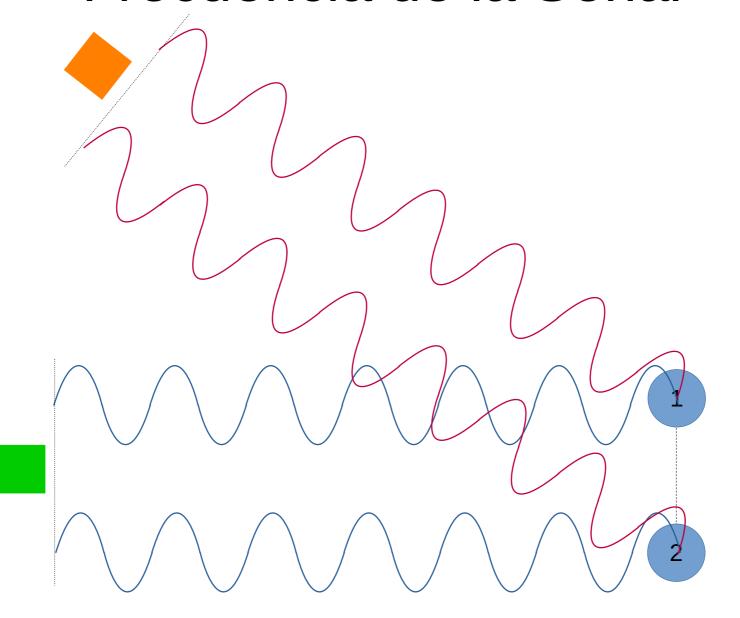
Delay-and-Sum Beamforming

- Se calculá el desfase apropriado al DOA por cada micrófono.
- Se desfasa cada señal.
- Se suma punto a punto, y la suma se divide entre el número de micrófonos.
- El resultado se saca a la salida.

- Beamforming intenta "recrear" la señal en la dirección de interés.
- Pero, si no "cabe" entre los micrófonos, no podrá hacerlo.
- Es decir:



- Por otro lado, algunas frecuencias llegarán al mismo tiempo (o "en fase") a los micrófonos aún cuando están en diferentes lugares.
 - Entre más alta la frecuencia, más posibilidad de que esto suceda.
- Es decir:



- Esto se conoce como: spatial aliasing.
 - No he encontrado una traducción al español buena.
 - "Solapamiento espacial" es la más popular.
 - ADVERTENCIA: aliasing se utiliza para otros tipos de distorsión (como cuando se viola el criterio de Nyquist-Shannon).

- Entonces, dependiendo de la distancia entre los micrófonos:
 - Bajas frecuencias pueden ser distorsionadas.
 - Voces bajas suenan "robóticas".
 - Altas frecuencias tienen más posibilidad de llegar a "en fase" en direcciones que no son de interes.
 - Y no serán reducidas en magnitud.

- Selección de la distancia inter-micrófono es un acto de balance:
 - Distancias pequeñas:
 - PRO: frecuencias altas removidas en direcciones interferentes, y las fuentes pueden estar más cercanas a los micrófonos
 - CON: frecuencias bajas distorsionadas.
 - Distancias grandes: viceversa.

- Si: $f = \frac{c}{\lambda_f}$
 - Donde **f** es la frecuencia, **c** es la velocidad de propagación (alrededor de 343 m/s en el aire), y λ_f es la longitud de onda de la frecuencia f.
- Para evitar corromper bajas frecuencias: $d > \lambda_{f_{min}}$
 - Donde d es la distancia entre micrófonos.
- Para evitar *spatial aliasing*: $d < \frac{\lambda_{f_{max}}}{2}$
- Buen balance: 0.18 y 0.21 m para señales de voz.
 - Parecido a la distancia entre orejas de humanos.

Delay-and-Sum Beamforming

 DAS es la base de otros filtros espaciales, por lo que estás consideraciones son importantes de tomar en cuenta aún cuando no se está utilizando este filtro espacial.

En el Dominio de la Frecuencia

 Recuerden que el desfase se puede también llevar a cabo por medio de una multiplicación de una exponencial compleja en el dominio de la frecuencia:

$$g(t-T)=F^{-1}(G(t)e^{-i2\pi f T})$$

• Pero se tiene que multiplicar a TODAS las frecuencias por el exponencial adecuado.

Delay-and-Sum Beamforming (Frecuencia)

- Calcular las exponenciales adecuadas para cada frecuencia de la señal.
 - Esto es el "steering vector" del arreglo: W_f.
- Hacerle FFT a las señales de entrada.
- Aplicar: $\hat{S}_f = W_f^H X_f$
- Sacarle la IFFT a S, el cual es la salida.

^H: es la operación de transposición conjugada de una matriz, también conocida como la *conjugación Hermitiana*.

$$\hat{S} = W^H X$$

$$\hat{S} = W^{H} X$$

$$X = \begin{bmatrix} x_{1}(f_{1}) & x_{1}(f_{2}) & \cdots & x_{1}(f_{N}) \\ x_{2}(f_{1}) & x_{2}(f_{2}) & \cdots & x_{2}(f_{N}) \\ \vdots & \vdots & \ddots & \vdots \\ x_{M}(f_{1}) & x_{M}(f_{2}) & \cdots & x_{M}(f_{N}) \end{bmatrix}$$

$$\mathbf{W} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ e^{-i2\pi f_1 T_2} & e^{-i2\pi f_2 T_2} & \cdots & e^{-i2\pi f_N T_2} \\ e^{-i2\pi f_1 T_3} & e^{-i2\pi f_2 T_3} & \cdots & e^{-i2\pi f_N T_3} \\ \vdots & \vdots & \ddots & \vdots \\ e^{-i2\pi f_1 T_M} & e^{-i2\pi f_2 T_M} & \cdots & e^{-i2\pi f_N T_M} \end{bmatrix}$$

Donde:

f_a: es la frecuencia n

T_m: es el desfase que se observa de la dirección de interés para micrófono m

X: matriz de las señales capturadas, transformadas con FFT

W: una matriz que contiene como columnas a los steering vector (A,)

$$\hat{S} = W^H X$$

$$\hat{S} = W^{H} X$$

$$X = \begin{bmatrix} x_{1}(f_{1}) & x_{1}(f_{2}) & \cdots & x_{1}(f_{N}) \\ x_{2}(f_{1}) & x_{2}(f_{2}) & \cdots & x_{2}(f_{N}) \\ \vdots & \vdots & \ddots & \vdots \\ x_{M}(f_{1}) & x_{M}(f_{2}) & \cdots & x_{M}(f_{N}) \end{bmatrix}$$

$$\mathbf{W} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ e^{-i2\pi f_1 T_2} & e^{-i2\pi f_2 T_2} & \cdots & e^{-i2\pi f_N T_2} \\ e^{-i2\pi f_1 T_3} & e^{-i2\pi f_2 T_3} & \cdots & e^{-i2\pi f_N T_3} \\ \vdots & \vdots & \ddots & \vdots \\ e^{-i2\pi f_1 T_M} & e^{-i2\pi f_2 T_M} & \cdots & e^{-i2\pi f_N T_M} \end{bmatrix}$$

Cada columna de **W** es un **A**, para una SOI

Donde:

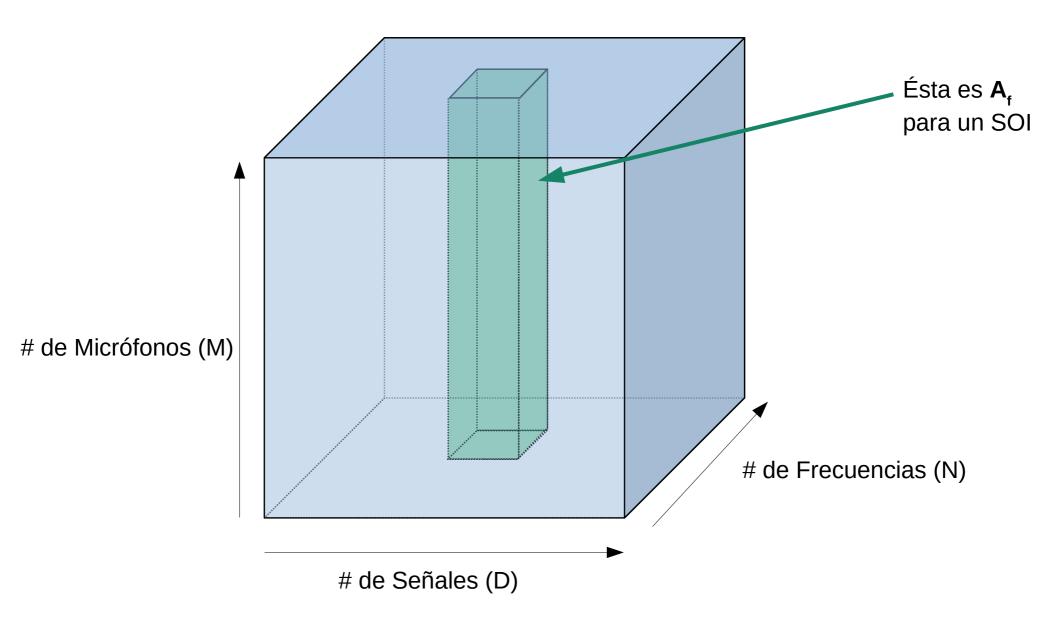
f_a: es la frecuencia n

T_m: es el desfase que se observa de la dirección de interés para micrófono m

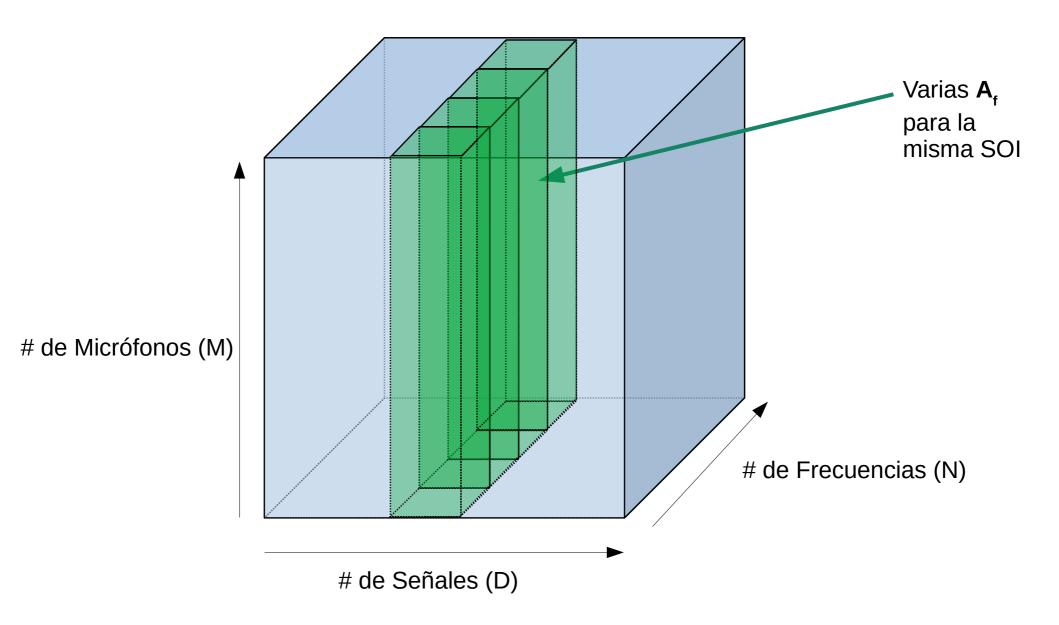
X: matriz de las señales capturadas, transformadas con FFT

W: una matriz que contiene como columnas a los steering vector (A,)

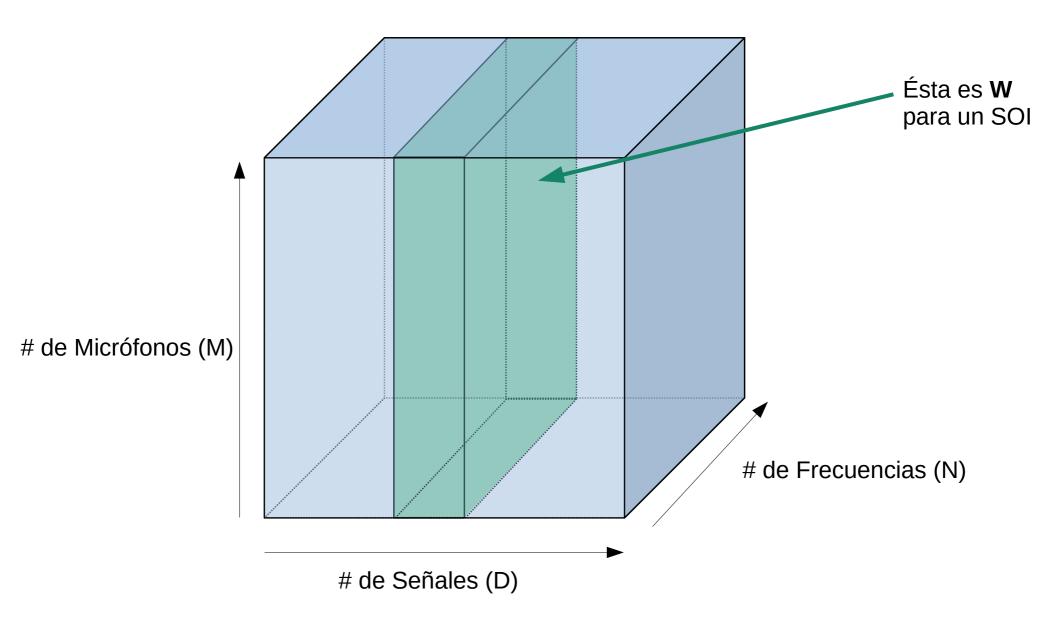
Relación entre A y W: se parecen, pero no son lo mismo



Relación entre A y W: se parecen, pero no son lo mismo



Relación entre A y W: se parecen, pero no son lo mismo



$$\hat{S} = W^H X$$

$$\hat{S} = W^{H} X$$

$$X = \begin{bmatrix} x_{1}(f_{1}) & x_{1}(f_{2}) & \cdots & x_{1}(f_{N}) \\ x_{2}(f_{1}) & x_{2}(f_{2}) & \cdots & x_{2}(f_{N}) \\ \vdots & \vdots & \ddots & \vdots \\ x_{M}(f_{1}) & x_{M}(f_{2}) & \cdots & x_{M}(f_{N}) \end{bmatrix}$$

$$\mathbf{W} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ e^{-i2\pi f_1 T_2} & e^{-i2\pi f_2 T_2} & \cdots & e^{-i2\pi f_N T_2} \\ e^{-i2\pi f_1 T_3} & e^{-i2\pi f_2 T_3} & \cdots & e^{-i2\pi f_N T_3} \\ \vdots & \vdots & \ddots & \vdots \\ e^{-i2\pi f_1 T_M} & e^{-i2\pi f_2 T_M} & \cdots & e^{-i2\pi f_N T_M} \end{bmatrix}$$

Cada columna de **W** es un **A**, para una SOI

Donde:

f_a: es la frecuencia n

T_m: es el desfase que se observa de la dirección de interés para micrófono m

X: matriz de las señales capturadas, transformadas con FFT

W: una matriz que contiene como columnas a los steering vector (A,)

$$\hat{S} = W + X$$

$$X = \begin{bmatrix} x_{1}(f_{1}) & x_{1}(f_{2}) & \cdots & x_{1}(f_{N}) \\ x_{2}(f_{1}) & x_{2}(f_{2}) & \cdots & x_{2}(f_{N}) \\ \vdots & \vdots & \ddots & \vdots \\ x_{M}(f_{1}) & x_{M}(f_{2}) & \cdots & x_{M}(f_{N}) \end{bmatrix}$$

$$W = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ e^{-i2\pi f_{1}T_{2}} & e^{-i2\pi f_{2}T_{2}} & \cdots & e^{-i2\pi f_{N}T_{2}} \\ e^{-i2\pi f_{1}T_{3}} & e^{-i2\pi f_{2}T_{3}} & \cdots & e^{-i2\pi f_{N}T_{3}} \\ \vdots & \vdots & \ddots & \vdots \\ e^{-i2\pi f_{1}T_{M}} & e^{-i2\pi f_{2}T_{M}} & \cdots & e^{-i2\pi f_{N}T_{M}} \end{bmatrix}$$

Donde:

f_a: es la frecuencia n

T_m: es el desfase que se observa de la dirección de interés para micrófono m

X: matriz de las señales capturadas, transformadas con FFT

W: una matriz que contiene como columnas a los steering vector (A,)

Efecto de la Hermitiana

- Al aplicar la transpuesta conjugada, la parte imaginaria de un número complejo se niega.
- Para el caso de un desfase en el dominio de la frecuencia, esto resulta en "negar" el efecto de desfase observado para la dirección de interés.

$$W_{f_1}^{H} = \begin{bmatrix} 1 \\ e^{-i2\pi f_1 T_2} \\ e^{-i2\pi f_1 T_3} \end{bmatrix}^{H} = \begin{bmatrix} 1 & e^{i2\pi f_1 T_2} & e^{i2\pi f_1 T_3} \\ e^{-i2\pi f_1 T_3} \end{bmatrix}$$

¿Qué es un steering vector?

- Es el vector que "dirige" la atención del filtro a una dirección de interés.
 - Esto difiere del direction vector que es más descriptivo de los desfases que sufre las señales capturadas dada una dirección.
- PERO, en el caso de Delay-and-Sum, y por el efecto de la Hermitiana: el steering vector y el direction vector son equivalentes.
- Esto no va a ser el caso en las siguientes técnicas.

Ejercicio #1

Descarguen:

```
das.m
delay_f.m
trianglewave.m
```

Recordatorio: Python

- En la página del curso también está la implementación en Python.
- Bibliotecas necesarias:
 - numpy
 - matplotlib
- También requieren descargar:
 - delay_f.py
 - trianglewave.py

Ejercicio #1

- El script das crea dos señales de origen (una senoidal y otra triangular) y simula la entrada en varios micrófonos en un arreglo lineal.
- Luego aplica el Delay-and-Sum Beamforming en una dirección (en radianes) deseada definida en:

doa_steer

Ejercicio #1

- Crea tres figuras:
 - Figura 1: las señales de origen.
 - Figure 2: la señal capturadas en el primer micrófono.
 - Figure 3: señales de origen superpuestas sobre el resultado de salida del beamforming.

También pueden cambiar:

M: número de micrófonos utilizados

d: distancia entre los micrófonos en metros

OJO: W y Hermitiana

- La implementación de la transpuesta en Octave lleva a cabo la conjugación compuesta (Hermitiana) de cada elemento del vector si es de número complejos.
 - Por lo tanto, este código entrega el resultado esperado.
- Para hacer una transpuesta común y corriente con números complejos en Octave se hace así:

W.

con un punto antes de la comilla

OJO: W y Hermitiana

- Si se cambian las líneas que crean a los steering vectors W (líneas 43-49), tal que los exponenciales tengan el signo invertido al que se utiliza en el script delay_f.
- Es decir, así:

```
delay_f.m: exp(-i*2*pi*w(f)*time)
das.m: exp(i*(2*pi*w(f)*m*d/c)*sin(doa_steer))
```

Y se utiliza la transpuesta normal en:

```
o_f(f) = w_c(:,f).'*X(:,f);
```

das entrega el mismo resultado.

 ¿Qué sucede si reducimos el número de micrófonos?

M = 3

 ¿Qué sucede si reducimos el número de micrófonos?

M = 3

- La calidad de la salida se reduce.
 - Recuerden que la señal de interferencia se reduce entre el número de micrófonos.
 - Entre más micrófonos, más calidad en la SOI.

- Regresa al número de micrófonos original: 8.
- ¿Qué sucede si modificamos a doa_steer a apuntar a la otra señal de origen?

- Regresa al número de micrófonos original: 8.
- ¿Qué sucede si modificamos a doa_steer a apuntar a la otra señal de origen?

 La salida no se parece en absoluto a la segunda señal de origen.

 ¿Qué sucede si aumentamos considerablemente el número de micrófonos?

M = 32 (cuatro veces más micrófonos)

 ¿Qué sucede si aumentamos considerablemente el número de micrófonos?

M = 32 (cuatro veces más micrófonos)

- La salida se mejora considerablemente.
 - La interferencia tiene más energía que la SOI.
 - Se requiere más información para recrearla.
 - Aunque todavía no es perfecta.

Conclusiones de Delay-and-Sum

- Fácil de implementar.
- Pero requiere muchos micrófonos para funcionar bien.
- No funciona bien cuando las interferencias tienen más energía que la SOI.
 - Mejor dicho, cuando la razón de Señal a Interferencia (SIR) es baja.

Notas de Delay-and-Sum

- Se puede generalizar a arreglos de micrófonos de más de una dimensión.
 - Sólo se tienen que manejar bien los desfases.

Steering vector vs. Direction Vector

- El steering vector (W) "dirige" la atención del filtro a una dirección de interés.
- El direction vector (A) describe los desfases que sufren las señales capturadas dada una dirección.
- En el caso de Delay-and-Sum, y por el efecto de la Hermitiana: el steering vector y el direction vector son equivalentes.
- PERO, esto no es el caso con otras técnicas.

Otras Formas de Beamforming

- Minimum Variance Distortionless Response
- Linearly Constrained Minimum Variance
- Generalized Sidelobe Canceller
- Frequency Masking ***

*** realmente no es beamforming... larga historia...

Historia triste:

- Este filtro es también conocido como "Capon Beamformer",
 ya que se le adjudica a J. Capon su invención en 1969:
 - Capon, J. "High-resolution frequency-wavenumber spectrum analysis." Proceedings of the IEEE 57.8 (1969): 1408-1418.
- Pero, en 1964 (5 años antes) M. J. Levin presenta una versión para señales sísmicas, usando maximumlikelihood, en vez de minimum variance:
 - Levin, M. J. "Maximum-likelihood array processing." Seismic Discrimination Semi-Annual Technical Summary Report 21, Lincoln Laboratory, Massachusetts Institute of Technology (1964).

- Historia triste (cont.):
 - En 1967, Capon reformula a Levin para *minimum variance*:
 - Capon, Jack, Roy J. Greenfield, and R. Jh Kolker.
 "Multidimensional maximum-likelihood processing of a large aperture seismic array." Proceedings of the IEEE 55.2 (1967): 192-211.
 - Capon aquí cita al reporte de Levin de 1964 y hasta le agradece su aportación al área.
 - En su artículo de 1969, Capon presenta la técnica para otras áreas que no son de señales sísmicas.
 - El reporte de Levin no es citado en este artículo.

- Historia triste (cont.):
 - El reporte de Levin ya no se puede obtener en la base de datos de Lincoln Lab del MIT.

https://www.ll.mit.edu/r-d/publications

- Capon y Levin trabajaron en este mismo laboratorio.
- Solo están disponibles los trabajos de 1966 en adelante: justo 2 años después.
 - ¿Coincidencia?
- ¿Por qué Levin no dijo nada? Murió antes de 1967.

- Intenta minimizar la energía de las interferencias, por medio de:
 - Minimizar la energía de toda la salida
 - Excepto la que viene de la dirección del SOI
- Esta minimización la provee por medio del cálculo de un steering vector W₀, basado en un direction vector A, tal que:

$$\hat{S}_f = W_{o,f}^H X_f$$

- Por esta minimización, este filtro también es conocido como Minimum Power Distortionless Response.
 - Esta variación asume que las señales tienen poca correlación, por lo que MVDR es más general.

- Si tenemos: $S_{mvdr} = W^H X$
- La energía de la salida de es:

$$E_{salida} = |S_{mvdr}|^2 = |W^H X|^2 = (W^H X)(X^H W) = W^H R W$$

Donde:

R: es la matriz de covariancia de las señales capturadas

W: es el steering vector óptimo a calcular

Entonces las minimización se convierte en:

$$\mathbf{W}_{o} = arg \min_{\mathbf{W}} (\mathbf{W}^{H} \mathbf{R} \mathbf{W})$$

Con la siguiente restricción:

$$A^H W_o = 1$$

 De esta manera, W_o mantiene lo que proviene de la dirección de la SOI con relativamente alta energía.

- Cómo llevar a cabo esa minimización es algo complicado.
- Pero se encontró una solución general:

$$\boldsymbol{W_o} = \frac{R^{-1}A}{A^H R^{-1}A}$$

Cálculo de R:

- Recordemos que A, así como lo fue W con D.A.S., se calcula por cada frecuencia.
- De igual manera, se debe calcular una R por cada frecuencia (igual que MUSIC), utilizando la información de dicha frecuencia de todas las señales a lo largo del tiempo:

$$R_f = X_{f,1:T} X_{f,1:T}^H$$

Inversión de R:

- Desgraciadamente, es muy posible que la matriz de covariancia no sea invertible.
- Para forzar su inversión, se recomienda multiplicar los valores en su diagonal por un valor justo arriba de 1. Por ejemplo, con una R de tamaño 2:

$$R \leftarrow R \cdot \begin{bmatrix} 1.001 & 1 \\ 1 & 1.001 \end{bmatrix} + \begin{bmatrix} 0.000000001 & 0 \\ 0 & 0.000000001 \end{bmatrix}$$

- Descargar:
 - mvdr.m
- Prepara y simula las señales, y muestra las mismas figuras que el script das.
- Tiene la opción de amplificar la salida por medio de la variable:

```
amp_out
```

 También le pueden insertar error en la localización cambiando la variable:

```
doa steer error
```

Recordatorio: Python

- En la página del curso también está la implementación en Python.
- Bibliotecas necesarias:
 - numpy
 - matplotlib
- También requieren descargar:
 - delay_f.py
 - trianglewave.py

- Probar primero con los valores que vienen.
- Luego probar con:

$$M = 2$$

- Probar primero con los valores que vienen.
- Luego probar con:

$$M = 2$$

• Funciona muy bien con pocos micrófonos.

• Probar con:

```
doa_steer = doa2
M = 2
```

Probar con:

```
doa_steer = doa2
M = 2
```

- Sigue funcionando bien.
- Tiene una pequeña tendencia de la primera señal.

• Probar con:

```
doa_steer = doa2
M = 2
doa_steer_error = 10 *pi/180
```

Probar con:

```
doa_steer = doa2
M = 2
doa_steer_error = 10 *pi/180
```

• La energía de la señal cae considerablemente.

Beneficios:

 Reducir la cantidad de micrófonos no lo impacta tanto como D.A.S.

• Problemas:

 La inversión de la matriz de covariancia, por cada frecuencia, puede ser lento para llevarlo a cabo en línea.

ADVERTENCIA:

- El principal objetivo de MVDR es minimizar la energía en la salida.
- Si hay error en la dirección, la señal se considerara como interferencia, resultando en su minimización.
- Es muy posible que se requiere adivinar cuánto se tiene que amplificar con la variable "amp_out".

- Variación "en línea":
 - Otra forma de calcular R es recursivamente:

$$R_{f}[t+1] = \alpha R_{f}[t] + (1-\alpha) X_{f,t} X_{f,t}^{H}$$

- Donde:
 - α es una constante de suavecimiento:
 - $0 < \alpha < 1$, pero cercano a 1.
 - $X_{f,t}$ es el vector de valores de la entrada en la frecuencia f en el tiempo t.
- $X_{t,t}X_{t,t}^{H}$ es la covariancia instantánea (como discutido en MUSIC).
- Se deja como trabajo propio implementar y probar esta variación.

Linearly Constrained Minimium Variance (LCMV)

- Es una evolución de MVDR, en el que:
 - Se pretende minimizar la energía.
 - Manteniendo la dirección de SOI intacta.
 - Y, cancelando las direcciones de interferencias conocidas.

Usando el mismo modelo que MVDR:

$$\mathbf{W}_{o} = arg \min_{\mathbf{W}} (\mathbf{W}^{H} \mathbf{R} \mathbf{W})$$

Pero ahora con la siguiente restricción:

$$C^{H}W_{o} = [1 \ 0 \ 0 \cdots 0]$$

Donde:
$$C = [A_{soi} A_{interf_1} A_{interf_2} \cdots]$$

A_{soi}: es el direction vector de la SOI

A_{interfi}: es el direction vector de la interferencia i

 Si aplicamos la solución general que se encontro con MVDR, se obtiene:

$$W_{arr} = \frac{R^{-1}C}{C^H R^{-1}C}$$

- El resultado de la minimización entrega en W_{arr} un renglón por cada steering vector en C.
- El que nos interesa es el primero:

$$\boldsymbol{W_o} = \boldsymbol{W_{arr}}(:, 1)$$

- Descargar:
 - lcmv.m
- Igual al script mvdr.

Recordatorio: Python

- En la página del curso también está la implementación en Python.
- Bibliotecas necesarias:
 - numpy
 - matplotlib
- También requieren descargar:
 - delay_f.py
 - trianglewave.py

- Probar primero con los valores que vienen.
- Luego probar con:

$$M = 2$$

- Probar primero con los valores que vienen.
- Luego probar con:

$$M = 2$$

• Funciona igual de bien con pocos micrófonos.

Con los mismos valores, pero ahora:

```
doa_steer = doa2
doa_null = doa1
```

Con los mismos valores, pero ahora:

```
doa_steer = doa2
doa_null = doa1
```

- Bastante bien.
- No existe la tendencia pequeña de la otra señal como sucedió con MVDR.

Con los mismos valores, pero ahora:

```
doa_steer = doa2
doa_null = doa1
doa_steer_error = 10 *pi/180
doa_null_error = 10 *pi/180
```

Con los mismos valores, pero ahora:

```
doa_steer = doa2
doa_null = doa1
doa_steer_error = 10 *pi/180
doa_null_error = 10 *pi/180
```

La energía de la señal no cae tanto como con MVDR.

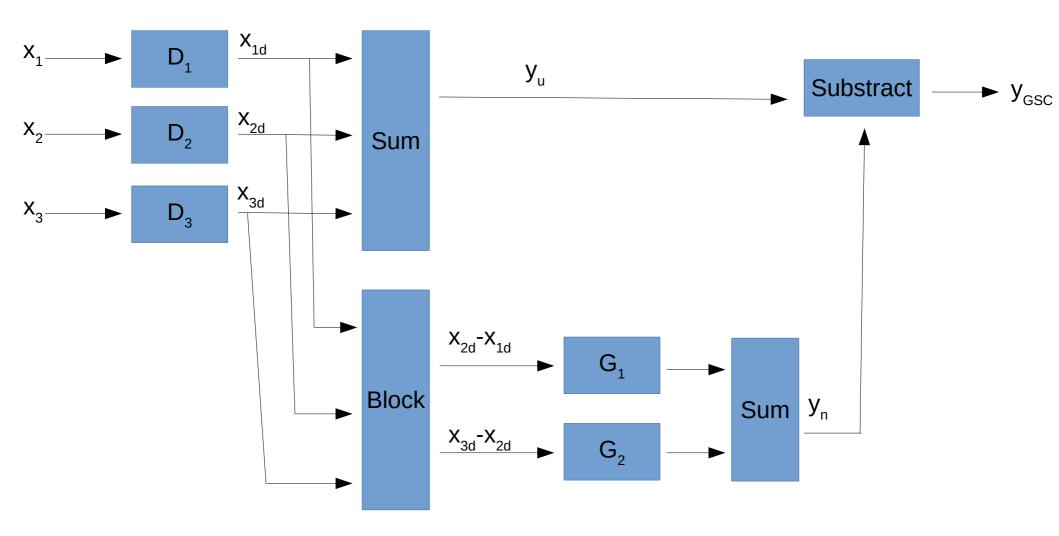
Beneficios:

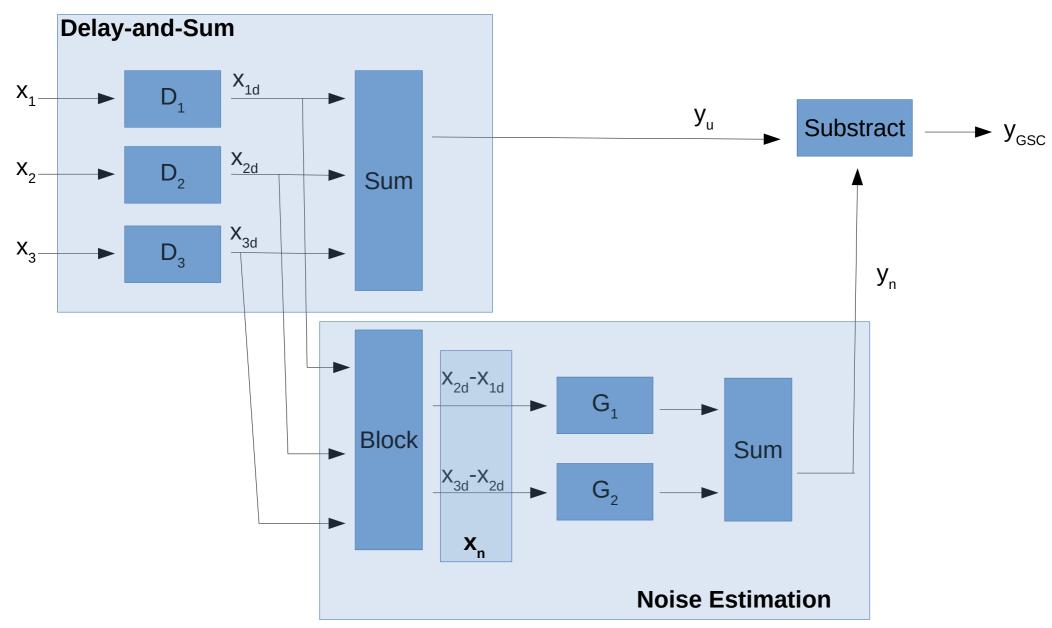
- Puede funcionar con pocos micrófonos, como MVDR.
- Más robusto a interferencias que MVDR.

Problemas:

- Mismos problemas que MVDR.
 - Inversión de R
 - Recalibración de amp_out al cambiar de SOI
 - En ambientes reales.
- Se requiere conocer la dirección de las interferencias.

- Es una generalización de LCMV.
- En vez de cancelar direcciones específicas de las interferencias conocidas.
- Se cancela TODO lo que no venga de la dirección del SOI.





- y_u: Salida del D.A.S.
 - Va a tener bastante información de la SOI, con algo de las interferencias.
- y_n: Estimación de ruido.
 - Va a tener bastante información de las interferencias, con algo de la SOI.
- y_{GSC}: Salida del sistema.

$$Y_{GSC} = y_u - y_n$$

Matriz de Bloqueo

- El bloque que dice "Block" es conocido como la matriz de bloqueo.
 - En este caso, la matriz de bloqueo es equivalente a restar las señales adyacentes.
 - Hay otras formatos de esta matriz, pero esta versión es la más simple que, a su vez, es efectiva.

Objetivo:

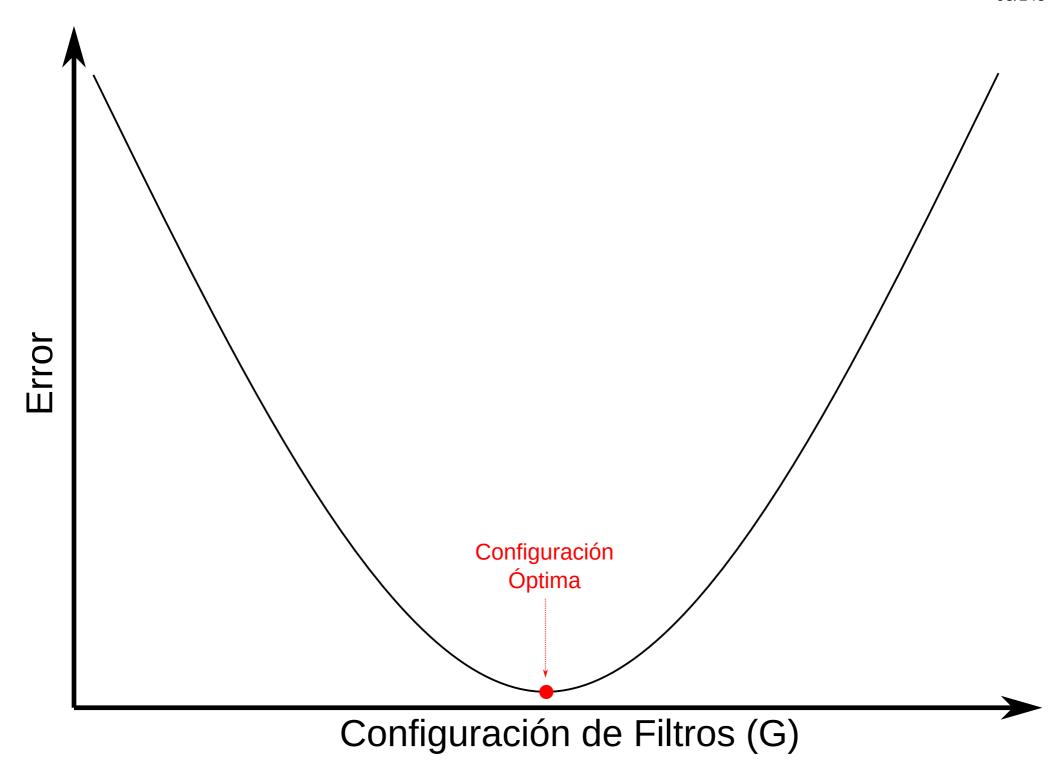
- Encontrar una serie de filtros G_x que, al aplicarlos a y_n , la resta provee una salida sin casi nada de interferencias.
- Desgraciademente, éste es el problema principal de esta técnica:
 - No hay serie de filtros G_x que sean aplicables a todas las combinaciones de señales que existen.

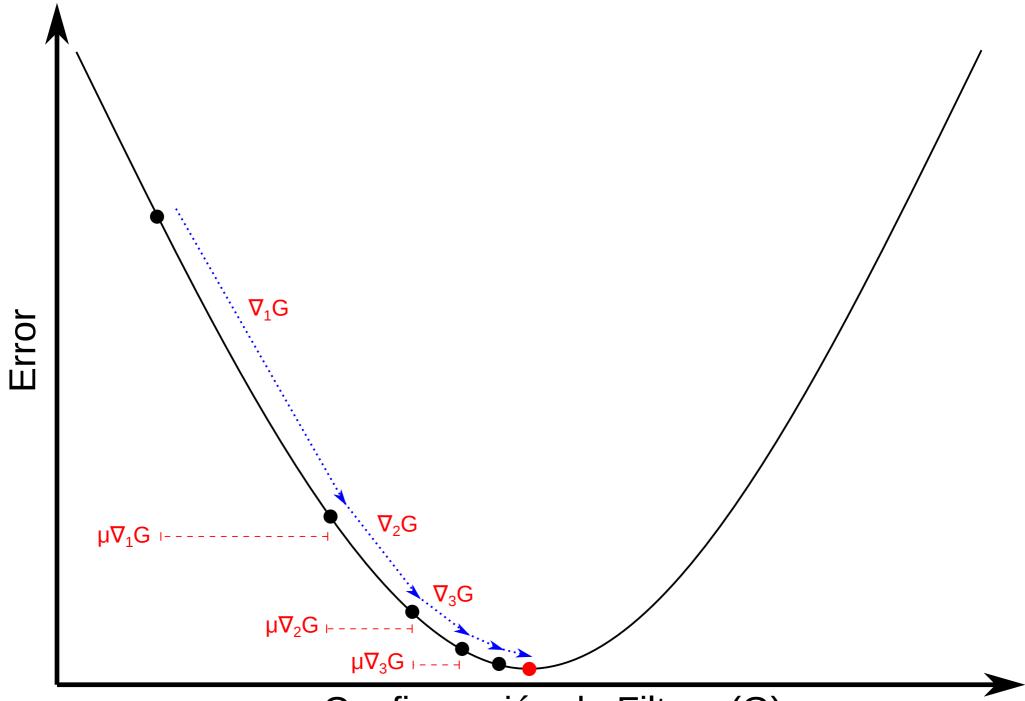
Adaptabilidad

 Pero, la forma del problema da a lugar a que se pueda aplicar un sistema de adaptación para que el propio sistema encuentre los G_x que sean los más apropiados a la SOI y ruidos estimados.

- Es una forma de encontrar un filtro óptimo (dada una señal e interferencias), en línea.
- Se encuentra por medio de minimizar el error entre la señal deseada y la señal estimada.

- Esta minimización se busca a partir de:
 - Calcular el gradiente más inclinado entre la versión de los filtros pasados y los actuales.
 - Esta gradiente se calcula en base al error entre la señal deseada y la estimada.
 - Utilizar el gradiente (multiplicado por una constante predefinida) para calcular un nuevo conjunto de filtros.
 - Utilizar dichos filtros para estimar una nueva señal.





Configuración de Filtros (G)

La gradiente más inclinada se calcula así:

$$\nabla G = y e$$

 Por lo tanto, la actualización de los filtros se hace así:

$$G_{k+1} = G_k + \mu y e$$

Donde:

μ: es la constante de adaptación.

Entre más alta, más grandes serán los pasos de adaptación. La multiplicación es punto-a-punto

Para nuestros propósitos:

y: es la salida del sistema

e: es el ruido que se ha estimado (x_n)

$$G_{k+1} = G_k + \mu y_{GSC} x_n$$

Donde:

μ: es la constante de adaptación.

Entre más alta, más grandes serán los pasos de adaptación. La multiplicación es punto-a-punto, para cada renglón de x_n

- Esto implica que el sistema no puede calcular toda la señal a la vez.
- Tiene que hacerlo a lo largo del tiempo de muestreo.
 - Lo cual se acomoda muy bien a nuestras necesidades.

- Dado una dirección del SOI
 - Desfasar las señales de entrada apropriadamente.
- Por cada muestra en un momento k:
 - Obtener de las señales desfasadas las muestras k-N hasta k.
 - N es el tamaño del filtro.
 - Calcular la salida del D.A.S. por medio de sumar punto a punto las señales desfasadas: y_u
 - Calcular el resultado de la matriz de bloqueo, por medio de restar las señales adyacentes, y guardar en buffer: x_n
 - Aplicar los filtros G al buffer de los resultados de la matriz de bloqueo, para obtener una estimación del ruido: $y_n = Gx_n$
 - Obtener la salida del GSC: $y_{GSC} = y_u y_n$
 - Actualizar los filtros con la información calculada: $G = G + \mu y_{GSC} x_n$

- Descargar:
 - gsc.m
- Igual al script mvdr, sólo que ahora también esta al variable de:

mu: la cual es equivalente a μ

Recordatorio: Python

- En la página del curso también está la implementación en Python.
- Bibliotecas necesarias:
 - numpy
 - matplotlib
- También requieren descargar:
 - delay_f.py
 - trianglewave.py

Probar primero con los valores que vienen.

• Probar primero con los valores que vienen.

- Hay momentos al principio de la señal ruidosos.
 - Pero después ya funciona moderamente bien.

• Probar con:

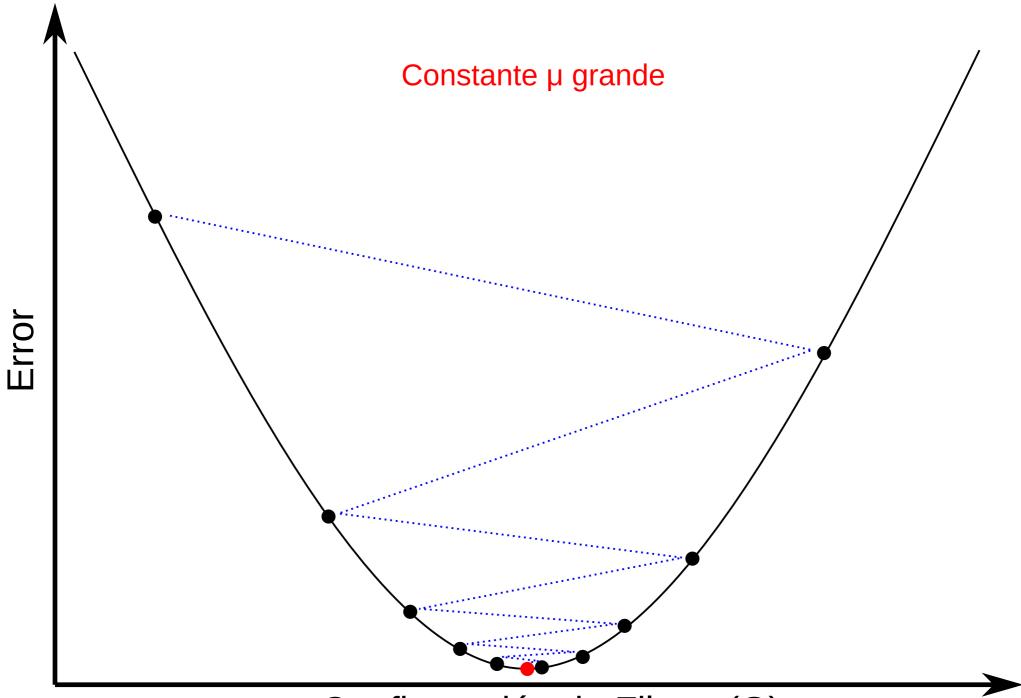
```
doa_steer = doa2
mu = 0.05
```

Probar con:

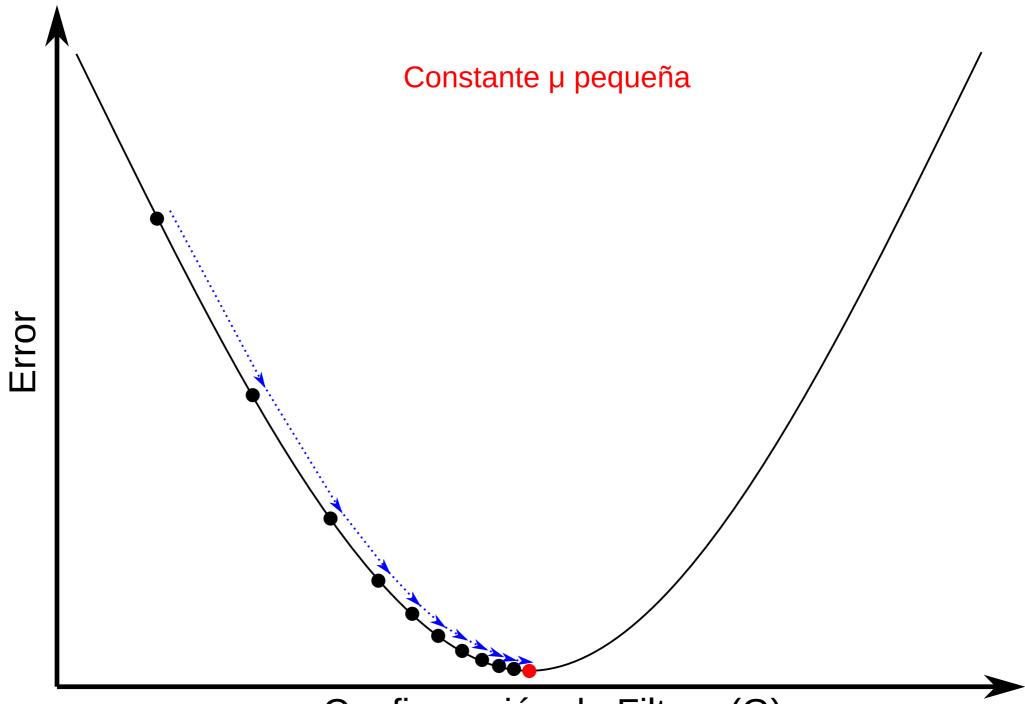
```
doa_steer = doa2
mu = 0.05
```

- Se deteriora la calidad.
 - Es sensible al SIR.
- Al cambiar la señal, también se tiene que cambiar mu.

- Se puede observar que en algunos momentos la señal está bien, pero en otros no.
- Para esto se propone mejor utilizar una mu dinámica, que se modifique dependiendo del SIR presente.



Configuración de Filtros (G)



Configuración de Filtros (G)

GSC con µ Dinámico

Para cada x_n , hay un filtro g_n que se actualiza con su propio μ_n , calculado a partir de la razón entre las energías de la salida y el ruido x_n :

```
mu0 : μ inicial
mu_max : μ máximo
p_x_n : energía de x<sub>n</sub>
p_y : energía de y<sub>GSC</sub>

if (mu0*p_x_n/p_y < mu_max)
    mu = mu0/p_y;
else
    mu = mu0/p_x_n;
end</pre>
```

Un ejemplo completo se puede observar en gsc_dyn

- Descargar:
 - gsc_dyn.m
- Igual al script gsc, sólo que en vez de la variable mu, ahora también están:

mu0: es una μ "inicial"

mu max: es el límite máximo de μ

Recordatorio: Python

- En la página del curso también está la implementación en Python.
- Bibliotecas necesarias:
 - numpy
 - matplotlib
- También requieren descargar:
 - delay_f.py
 - trianglewave.py

Probar primero con los valores que vienen.

Probar primero con los valores que vienen.

- Desempeño parecido a gsc.
 - Aunque sigue un poco mejor a la señal de interés.

Ahora probar con:

doa_steer = doa2

Ahora probar con:

doa_steer = doa2

- Batalla en adaptarse al inicio, pero se acomoda a la señal de interés al final.
- No requirió recalibrar a mu0 ni mu_max.

Ahora probar con:

```
doa_steer = doa1
M = 3
```

Ahora probar con:

```
doa_steer = doa1
M = 3
```

• Perdió calidad en la señal de salida.

GSC con µ Dinámico

Beneficios:

- Compatible a soluciones en línea.
- Muy liviano.
- No requiere ir a y regresar del dominio de la frecuencia.
- Buenos resultados, dado un tiempo de adaptación.

GSC con µ Dinámico

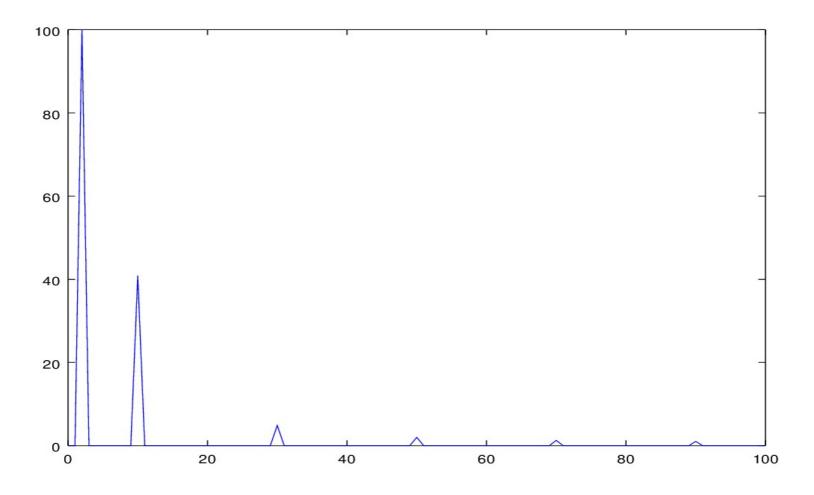
Problemas:

- Requiere de tiempo para encontrar los filtros óptimos durante el muestreo.
- Requiere de calibración de la constante de adaptación para cada diferente ambiente sonoro.
 - Dos variables a calibrar (mu0 y mu_max).
- Requiere de una cantidad moderada (8) de micrófonos.

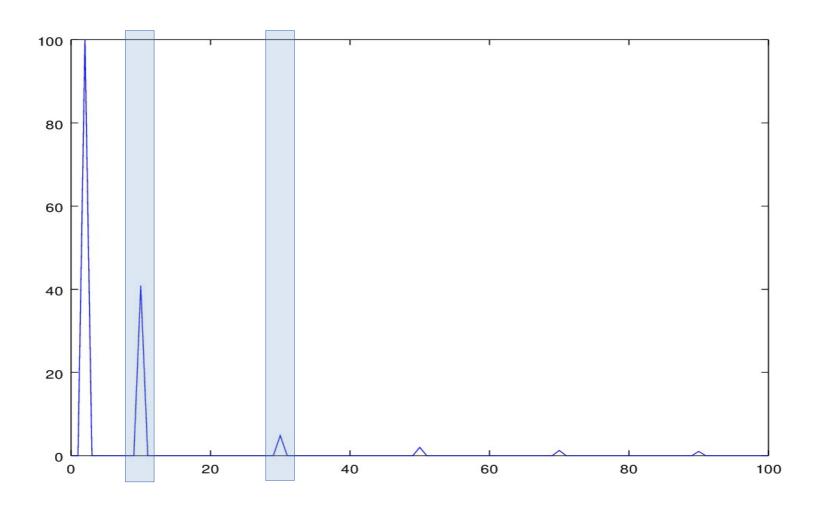
- Realmente no es Beamforming.
 - De hecho, requiere un sólo micrófono.
- Pero lo agrego aquí porque con algunos ajustes, se parece mucho a una técnica de Beamforming.

 La intención es encontrar una máscara óptima tal que al aplicarla a nuestra entrada en el dominio de la frecuencia, sólo permita pasar las frecuencias de nuestra señal de interés.

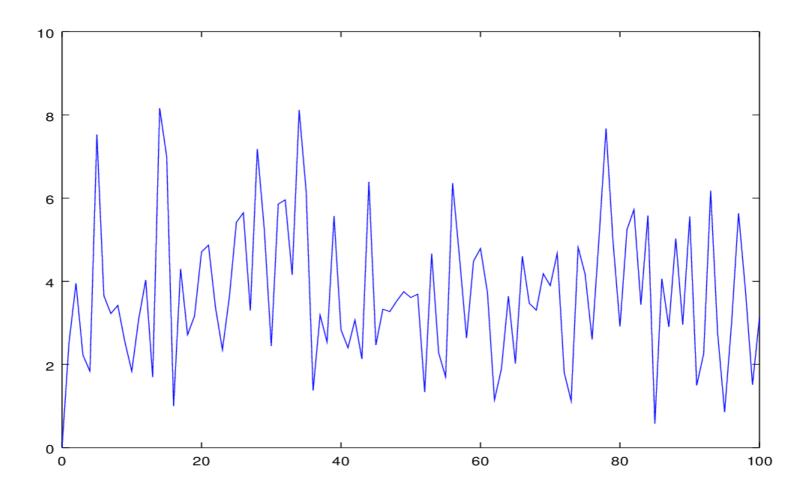
• Es decir, dado un espectro como:



• La máscara selecciona frecuencias como:



Pero cuando tenemos espectros como:



Si los unicornios fueran reales...

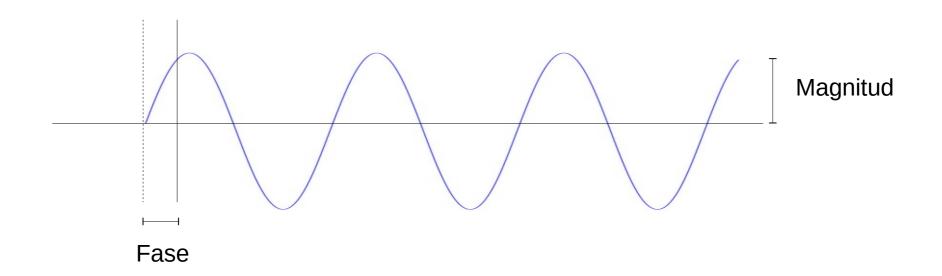
- Esta dichosa máscara óptima es el santo grial para muchos de la comunidad de separación de fuentes.
- Desafortunadamente, entre más y más se busca, más se cree que no existe.
- Y si existe, es dinámica, ya que depende de:
 - Presencia/características de las inteferencias.
 - El entorno acústico.
 - Cambios en la misma señal de interés.

¿Entonces?

 Se puede diseñar dicha máscara utilizando información de beamforming.

Recordatorio

 La fase de una frecuencia es el retraso en radianes de la señal senoidal que posee dicha frecuencia.



Operador de Desfase

 Al multiplicar a una frecuencia "f" por el operador de desfase:

$$e^{-i2\pi f T}$$

 Se afecta directamente a la fase de dicha frecuencia.

Por lo tanto...

- Al estar llevando a cabo un Delay-and-Sum en el dominio de la frecuencia, lo que realmente está sucediendo:
 - Se "alinean" en fase las frecuencias pertenecientes a nuestra SOI.
 - Y se "desalinean" aquellas que no.
- De esta manera, al sumarse, se intensifican las frecuencias de nuestro SOI, y se reducen las que no.
- Esto significa que las frecuencias que tengan una fase similar en todas las señales, son frecuencias que pertenecen a nuestra señal de interés.

Phase-Based Frequency Masking

- Aplicar W^H a X, pero sin sumar las señales.
 - Multiplicación punto-a-punto, no matricial.
- Ahora, por cada frecuencia:
 - Calcular la diferencia de la fase entre las señales resultantes.
 - Si la diferencia es menor a un umbral, la frecuencia pertenece a nuestro SOI.
 - Escribir en la salida el valor de esta frecuencia del micrófono de referencia.
 - Si no, no pertenece.
 - Escribir en la salida un 0 en esta frecuencia.

- Descargar:
 - freqmask.m
- Crea las siguientes figuras:
 - Figura 1: las señales de origen.
 - Tiempo arriba; magnitud en frecuencia abajo.
 - Figure 2: la señal capturada en el primer micrófono.
 - Tiempo arriba; magnitud en frecuencia en medio; fase en frecuencia abajo.
 - Figure 3: señales de origen superpuestas sobre el resultado.
 - Tiempo arriba; magnitud en frecuencia en medio; fase en frecuencia abajo.

Recordatorio: Python

- En la página del curso también está la implementación en Python.
- Bibliotecas necesarias:
 - numpy
 - matplotlib
- También requieren descargar:
 - delay_f.py
 - trianglewave.py

• Probar primero con los valores que vienen.

Probar primero con los valores que vienen.

- Funciona bien.
 - La máscara (en rojo) selecciona sólo el primer pico.
 - La primera señal es senoidal, sólo ocupa un pico.

• Probar ahora con:

doa_steer = doa2

Probar ahora con:

doa_steer = doa2

- Sigue funcionando bien.
 - La máscara ahora agarra al resto de los picos.

Phase-Based Frequency Masking

- El tipo de máscara que se está utilizando se conoce como binaria.
- Este tipo de máscaras introducen discontinuidades en el dominio de la frecuencia.
 - Es típico escuchar artefactos en la salida.

Phase-Based Frequency Masking

- Beneficios:
 - Casi tan liviana como DAS.
- Problemas:
 - Discontinuidades en frecuencia y tiempo.

Antes de terminar con este tema...

- Es importante hacer notar que las pruebas que se hicieron aquí son representativas, pero no exhaustivas.
- El código que se entrega es para que ustedes hagan sus propias pruebas
- Así, obtengan sus propias conclusiones de cuál técnica es la que utilizarán en su proyecto final.

Ideas a probar

- ¿Cuál es el impacto de la distancia entre micrófonos para cada técnica?
- Si se cambia el número de micrófonos, la distancia máxima entre el micrófono de referencia y el último micrófono también cambia. ¿Cómo impacta esto a las técnicas?
- ¿Qué pasa si se incrementa la intensidad de la señal triangular a que sea más grande que la senoidal?
- ¿Qué pasa si se utilizan otros tipos de señales?

Siguiente Clase:

Separación de Fuentes por Análisis Estadístico***

Ó

Separación de Fuentes en Línea