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Robust  Adaptive  Beamforming 

Abstract-Adaptive beamforming  algorithms  can be extremely  sen- 
sitive  to  slight  errors in array  characteristics.  Errors  which  are  uncor- 
related  from  sensor  to  sensor  pass  through the beamformer  like un- 
correlated or spatially  white  noise.  Hence,  gain  against  white  noise  is 
a measure of robustness. A new algorithm  is  presented  which  includes 
a quadratic  inequality  constraint  on  the  array  gain  against  uncorre- 
lated  noise,  while  minimizing  output  power  subject to multiple  linear 
equality  constraints.  It  is  shown  that a simple  scaling of the  projection 
of tentative  weights,  in  the  subspace  orthogonal to the  linear  con- 
straints,  can  be  used to satisfy  the  quadratic  inequality  constraint. 
Moreover,  this  scaling  is  equivalent to a projection  onto  the  quadratic 
constraint boundary so that the usual favorable  properties of projec- 
tion  algorithms  apply.  This  leads to a simple,  effective,  robust  adaptive 
beamforming  algorithm  in  which  all  constraints  are  satisfied  exactly  at 
each  step  and roundoff errors  do not accumulate.  The  algorithm  is 
then  extended to the  case of a more  general  quadratic  constraint. 

T 
I. INTRODUCTION 

HE purpose of this paper is to present an improved 
recursive algorithm for adaptive beamforming which 

includes both multiple linear equality constraints and  a 
quadratic inequality constraint. The quadratic inequality 
constraint may be used to ensure  that  the beamformer is 
robust, not highly sensitive to small amplitude,  phase, or 
position errors. It  limits  signal suppression effects and 
limits the growth of the adaptive weights which is impor- 
tant in digital implementations. Thus,  it  controls sensitiv- 
ity to tolerance errors.  The significant new feature of the 
algorithm is  the way in which this inequality constraint is 
implemented so that  all constraints are satisfied exactly at 
each time  step  and roundoff errors  do not accumulate. We 
call the new algorithm the ‘‘scaled projection algorithm’ ’ 
since it involves projection of the tentative weight updates 
onto the  subspace which is orthogonal to the  linear con- 
straints followed by a  scaling in that subspace, if neces- 
sary, to satisfy the  quadratic inequality constraint. 

The potential for using adaptive beamforming to im- 
prove the performance of sensor  arrays was recognized in 
the early 1960’s in the fields of sonar  [1]-[6], radar [7]- 
[lo], and  seismic [11]-[16] signal processing. It soon be- 
came apparent that a variety of formulations of optimum 
detection and estimation problems gave rise to the same 
spatial processor [17]-[22]. The basic concept is to use 
measured background spatial correlation characteristics to 
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reject noise and  interference  [23]-[27], thereby improv- 
ing beam output signal-to-noise ratio. In order  for  the pro- 
cessor to reject noise without rejecting signal, it is nec- 
essary to make some assumptions  about the signal 
characteristics.  The problem of mismatch arises when the 
true signal characteristics differ from the assumed ones. 
A robust processor should be relatively insensitive to small 
errors in the assumed signal characteristics. 

Many important sources of error which occur in phys- 
ical systems are approximately uncorrelated from sensor 
to sensor and degrade system performance in a way which 
is similar to adding a corresponding amount of uncorre- 
lated or spatially white noise to each  sensor.  Thus,  the 
array gain against spatially white noise (“white noise 
gain”) is a  measure of robustness and its reciprocal is  a 
measure of sensitivity to tolerance errors.  A very similar 
problem had arisen much earlier in the context of super- 
directive transmitting arrays.  Indeed, in the mid-1950’~~ 
Gilbert and Morgan [28]  and Uzsoky and Solymfir [29] 
specifically included a robustness constraint when maxi- 
mizing the geometric gain of transmitting arrays.  Geo- 
metric gain  in  a transmitting array is mathematically 
equivalent to array gain  against spherically isotropic noise 
(directivity) in  a receiving array. 

The use of recursive algorithms for  adaptive beamform- 
ing also dates back to the  1960’s. Important early contri- 
butions were made by Shor  [5], Widrow [30], Griffiths 
[32], and Lacoss [3 11. Multiple linear  constraints  are used 
in adaptive beamforming to ensure unity response to a unit 
signal from the boresight signal direction,  to control 
mainlobe shape,  and  to  place beampattern nulls in se- 
lected directions. They were introduced by Booker and 
Ong [33] and were included by Frost  [34] in his well- 
known adaptive beamforming algorithm.  Kooij, in his 
doctoral thesis [35], used a penalty function approach in 
conjunction with Frost’s algorithm in  order to control the 
white noise gain in  a recursive adaptive  beamformer.  The 
new scaled projection algorithm uses Frost’s  approach  for 
handling the multiple linear equality constraints and in- 
cludes a novel approach to handling the  quadratic in- 
equality constraint. 

For  a given problem,  there is usually a  close relation- 
ship between the  optimum beamformer based on known 
covariances, and  an  adaptive beamformer which adjusts 
its parameters based on  the input data without prior as- 
sumptions concerning the  noise  covariance structure. In a 
stationary situation,  the  steady-state performance of a 
good adaptive beamformer should be close  to  that of the 
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The Q-factor or supergain ratio [lo], [29],  [51] is an gain is 
alternative measure of sensitivity to errors which arises 
naturally in the theory of superdirective  arrays. It is de- 
fined as the ratio of geometric gain to white noise gain, 

M 2  G = -  
d*Qd 

that is, 
B. Single  Boresight Look Direction  Constraint 

Gg w*w -= -  ( lo) A practical difficulty with unconstrained array gain op- 
G,  w*Q,w' timization is  that  the signal and noise powers and the noise 

The quantity p = G/G,, ,  has been called the generalized 
supergain ratio [41]  since it generalizes the supergain ra- 
tio to  an arbitrary noise matrix.  It arises in analyses of the 
effects of noise perturbations on beamformers with fixed 
weights. 

cross-spectral matrix Q are not known. In many applica- 
tions, what is measurable is the signal-plus-noise matrix 
R. An important suggestion by Levin  and others [13], 
[14],  [21] was to minimize the total output power, which 
is directly measurable, subject to a constraint of unity un- 
distorted signal response from the desired look  direction. 

111. OPTIMIZATION 
In .this  section, the relationships among a number of 

optimization problems are  discussed.  This provides the 
foundation for  later discussions of recursive adaptive. al- 
gorithms as well as providing historical perspective. 

A.  Unconstrained Array Gain 
The  beamformer, which maximizes the improvement in 

signal-to-noise ratio or array gain,  is optimum for  a va- 
riety of detection and estimation problems [ 171-[2  11. The 
problem is formulated as  follows: 

I w*d 1' 
Max ~. 
w w*Qw 

The well-known solution is 

w = aQ-'d (11) 

where "a" is  an arbitrary complex constant. Choosing CY 
to produce unity signal response with zero phase shift so 
that w*d = 1 yields 

Q-'d 
d *Q-'d ' 

w =  

This form of the weight vector was used in early seis- 
mic work [ 121, [ 151, where noise estimates were obtained 
before and after the signal arrival. The resulting array gain 
is 

G = d*Q-'d. ( 1 3 )  

The expression for G may  be written in terms of the 
eigenvalues X j  and eigenvectors ej of Q as 

j =  1 "J 

The optimization is seen to  emphasize projections of the 
direction vector d onto  eigenvectors associated with small 
eigenvalues. When model imperfections exist, difficulties 
arise if too much reliance is placed on very small projec- 
tions of the  signal. 

White noise gain is maximized by the conventional 
beamformer w = d / M ,  for which G ,  = M ,  and the array 

That is, 

Min w*Rw subject to w*d = 1. 

This problem may be seen to be mathematically equiva- 
lent to the unconstrained array gain optimization problem 
since ( w * R w )  is a  linear combination of the numerator 
and denominator of (6), and  the  numerator  has been con- 
strained.  The solution is 

When R is given by (5) ,  the  equivalence of (16) and (12) 
may be shown using matrix identities [43].  The inclusion 
of the signal in R leads to signal suppression in the  face 
of tolerance errors,  or mismatch between the  true  and as- 
sumed signal spatial  characteristics.  This effect was ana- 
lyzed in detail in 1431. 

C. White  Noise  Gain or Robustness  Constraint 
This generalization to an arbitrary noise cross-spectral 

matrix Q of the problem addressed by Gilbert  and Morgan 
[28] was applied to adaptive beamforming by Cox  [41]. 
The problem is to maximize array gain subject to an 
equality constraint on  the white noise gain, that is, 

Max G subject to G,,, = a2 I M. 

The constraining value a2 must be chosen less than or 
equal to the maximum possible white noise gain M for the 
problem to  be'self-consistent. 

Equivalently, one can minimize ( ( 1 / G  ) + E ( 1 / G,) ) 
where E is  a  Lagrange multiplier. This  leads  to 

w*Qw EW*W w * ( Q  + E Z ) ~  

Iw*d12 Iw*d l 2  Iw*d l 2  
Min ___ + ___ - - Min . (17) 

The  solution, which is normalized for unity response to a 
unit boresight signal, in analogy to  (12),  is 

( Q  + cZ)-'d 

d * ( Q  + d - ' d  
w =  

where E is adjusted to satisfy the white noise gain con- 
straint.  It is seen to involve adding E to the diagonal ele- 
ments of Q which adds E to each eigenvalue without mod- 
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ifying the eigenvectors. The old ad hoc technique of 
adding a small amount to each diagonal element prior to 
matrix inversion is actually the optimum procedure for 
this problem. The Lagrange multiplier E provides a con- 
tinuous monotonic parameterization between the uncon- 
strained optimum ( E = 0 ) and the conventional ( E = co ) 
beamformers. Unfortunately,  the relationship between E 

and the  constraint value is not simple. 
For  example,  consider  an eight-element uniformly 

spaced line array in spherically isotropic noise.  Fig. 2, 
due to Kooij [35], presents curves of array gain versus 
white noise gain for element spacings of 0.1 , 0.2, 0.3,  
0.4, and 0.5 wavelengths when the signal direction is 
endfire. The parameter E varies from 0 to 00 along the 
curves. For closely spaced elements, unconstrained 
beamforming is seen to result in extremely low values of 
white noise gain.  This is a classical supergain situation. 
Curves such as those of Fig.  2 may be used to trade off 
array gain  for robustness in setting the  value of the white 
noise gain constraint. If we consider  the spacing s / h  = 
0.2, and constrain the white noise gain to be unity (0 dB), 
it is possible to achieve 13.4 dB of array gain with an 8- 
element array which is only 1.4 wavelengths long.  The 
resulting beampattern is given in Fig. 3.  The performance 
of the improved adaptive algorithm for this example will 
be presented later. Additional curves of the type given in 
Fig. 2, together with a discussion of the practicality of 
achieving high gain with short endfire arrays,  are pre- 
sented in [52]. 

The problem of maximizing array gain subject to an 
equality constraint on white noise gain involves three 
quadratic forms: 

I w*d 1 2 ,  w*Qw, and w*w. 

Since the quantities output power, array gain, white noise 
gain, and generalized supergain ratio each involve two of 
these quadratic forms,  there  exists  a number of equivalent 
formulations of the optimization problem. Specifically, 
the following interesting problems are  equivalent. 

Problem A: Maximize array gain, constrain white noise 
gain, and signal response [41] 

1 w*d l 2  I w*d l 2  
Max- ___ - - 62, w*d = 1. 

w w*Qw’ w*w 

Problem B: Maximize array gain, constrain norm of w ,  
and signal response 

1 w*d l 2  
Max ~ w*w = w*d = 1. 
w w*Qw7 

Problem C: Minimize output  power, constrain white 
noise gain, and signal response [35] 

I w*d 1’ 
w*w 

Min w*Rw, ~ - - a2, w*d = 1. 

Problem D: Minimize output power, constrain norm of 
w, and signal response [53] 

Min w*Rw, w*w = 6-2, w*d = 1. 
W 

G 

2o r 
G 

1 2o 

8-ELEXEST ESDFIRE LISE A R R A Y  
SPHERICALL) ISOTROPIC SOISE 

- X I  -40 -311 -20 -10 10 

WHITE NOISE GAIN [dB], G, 

Fig. 2. Array gain  versus  white  noise  gain. 

Fig. 3 .  Constrained  optimum  beampattern. 

In analogy with (12) and (16), an equivalent to (18) 
which does not require knowledge of the noise matrix Q ,  
and is a solution to Problems A-D, is 

[ R  + €11 -Id 
w =  

d* [ R  + E Z ]  - 2 .  

D. Constraint on Supergain Ratio 
Uzsoky and SolymAr [29] considered the problem of 

maximizing geometric gain subject to  a constraint on the 
supergain ratio,  that is, 

Iw*dI2 w*w 
Max- ___ - 

w w*Qgw’ w*Q,w 
- a. 

They showed that this is equivalent to the problem of Gil- 
bert and Morgan who constrained white noise gain. Again, 
only three quadratic forms are involved. By analogy, there 
are equivalents to Problems A-D which constrain the gen- 
eralized supergain ratio. 

Lo, Lee, and Lee [lo], following the lead of Uzsoky 
and SolymAr, considered the problem of maximizing ar- 
ray gain with a constraint on the supergain ratio. That  is, 

Iw*dI2 w*w 
Max- ~ - 

w w*Qw ’ w*Qgw 
- a .  
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This problem involves four  quadratic forms and is signif- 
icantly more complicated than constraining white noise 
gain to ensure robustness. There  is no apparent reward for 
the increased complication. 

E. Multiple  Linear  Constraints 
Multiple linear constraints are  a generalization of the 

single boresight constraint [3 11. They were introduced by 
Booker and Ong [33] and included' by Frost [34] in his 
well-known recursive adaptive beamforming algorithm. 
This problem is formulated as  one of minimizing the out- 
put power subject  to multiple linear equality constraints, 
that is, 

Min w*Rw 
W 

subject to 

c*w = g. (20) 

The matrix C* is assumed to  have K (  K < M ) linearly 
independent rows,  one  for each constraint, so that C* is 
a K X M matrix.  One row of C * is usually d *, and  the 
corresponding element of g is 1 , so that  the unit boresight 
response constraint 

d*w = 1 (21) 

is usually included in (20). This important constraint per- 
mits the combination of various frequency bins at  the 
beam€ormer output without amplitude  and phase distor- 
tion. Other  linear constraints may include multiple point 
constraints on the mainlobe [50], [54], or derivative con- 
straints [50],  [53], [55 ] ,  [56] to control mainlobe shape, 
or null constraints [57] to reduce response in specific di- 
rections or  to strongly control mainlobe width. 

The problem may be solved by using a Lagrange mul- 
tiplier to adjoin the constraints to  the  objective function. 
The solution is 

w = R- 'C[C*R- 'C] - 'g .  (22 1 
It  is useful to consider  this problem in terms of the com- 

plementary orthogonal linear subspaces associated with 
the constraint matrix C. The weight vector w may be de- 
composed into  two orthogonal components: 

w = w c + v  (23) 

where w, is made up of a  linear combination of the  col- 
umns of C (w, is the projection of w onto  the range of 
C ), and v is orthogonal to the rows of C* ( v is the pro- 
jection  of w onto  the null space of C* ). The respective 
projection matrices are: 

P, = C [ C * C ] - ' C *  (range of C) (24) 

and 

PC = I - P, (null space of c*) (25) 

so that 

w, = P,w (26) 

and 
I 

v = P,w.  (27) 

Projecting the optimum solution for w of (22) onto  the 
range of C yields 

w, = C[ C * C ]  -'g (28) 

which does not depend on R. The matrix C[ C*C ] -' may 
be recognized as the generalized inverse of C *. Thus, (28) 
gives the minimum norm solution of the constraint equa- 
tion (20). It  is also useful to note from (28) that 

wzw, = g*[ C*C] -'g. (29) 

Since w, is independent of R, an equivalent optimization 
may be carried out in the  subspace which is orthogonal to 
C * .  

F. Implementation  Considerations 
Since  the K rows of C* are assumed to  be linearly in- 

dependent,  it is always  possible to transform the con- 
straint equation (20) such that  the rows of C* are orthog- 
onal and C*C = I .  This simplifies (24)'  (28), and (29) .. 

For  line  arrays of sensors, significant simplifications of 
mainlobe constraints can be accomplished if the  outputs 
of the individual sensors are first delayed or phased to 
align signals from the boresight direction of each  beam of 
interest. Then, multiple point constraints at correspond- 
ing positions (e.g.l  boresight, 3 dB down points) of dif- 
ferent beams may be represented by 'a single constraint 
matrix C*, which does not depend on frequency. More- 
over, when the constraints are  chosen symmetrically on 
the mainlobe, they occur  in complex conjugate  pairs  and 
may be transformed into  a  pair of real constraints.  Thus, 
the constraint matrix C* can be reduced to  a  single real 
matrix which applies  across beams and frequencies. Sig- 
nificant memory and computation savings result. 

IV . ADAPTATION 
Frost [34] presented an  adaptive algorithm for mini- 

mizing output power subject to multiple linear equality 
constraints. In the notation of this paper, his algorithm is 

w ( t  + 1) = W, + P , [ w ( t >  - p x ( t )   ~ * ( t ) ]  (30) 

where p is a  small,  positive,  step-size  parameter which 
controls the rate-of-change of w. The algorithm is closely 
related to deterministic gradient projection.  Since [ x  ( t ) 
x* ( t ) ]  is  an instantaneous estimate of R ,  the quantity 

X ( t )   z * ( t )  = [ . ( t )  x * ( t ) ]  w ( t )  (31)  

is an instantaneous estimate of the generalized gradient 
R w of the  output  power 0 2 ,  with respect to  the  weights. 
Frost's algorithm is an improvement over  the  gradient 
projection algorithms of Lacoss [31] (single boresight 
constraint) and Booker and Ong [33] (multiple  linear con- 
straints) which had the  form 

w ( t  + 1) = w ( t )  - p z * ( t )   P , x ( t ) .  (32) 

Because gradient projection algorithms are known to wan- 
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der off the constraints due to roundoff error,  Frost pro- 
jected the updated solution onto the null space of C* at 
each step, and then added the component w,, which does 
not depend on the input statistics. 

The effect of the size of the parameter p on the perfor- 
mance of recursive algorithms is discussed by Griffiths 
[32] and Frost  [34]. A sufficient condition for bounded 
steady state  “misadjustment” is 

o < p <  
3E(x*x)‘ (33) 

To ensure that (33) is satisfied, it is common practice to 
adapt p based on an estimate of input power. 

The first explicit consideration of a robustness con- 
straint in a recursive adaptive beamforming algorithm was 
apparently by Winkler and Schwartz [58]. They applied a 
gradient projection algorithm to the problem of Lo,  Lee, 
and Lee of maximizing array gain subject to a constraint 
on the supergain ratio.  That formulation did not lead to a 
simple algorithm. They later applied a penalty function 
with gradient projection to the same problem [59]. 

Kooij [35] investigated several algorithms which in- 
cluded a consideration of white noise  gain directly in the 
algorithm. In particular,  for  a smoothed estimate of R of 
the form 

R ( t )  = (1 - a )  R ( t  - 1) + a x ( t )   x * ( t ) ,  (34) 

where a is a smoothing parameter (0  < a I 1 ), Kooij , 
motivated by (19),  gave  the following weight update 
equation: 

w ( t  + 1) = w, + P,[W(t) 

(35) 
In the special case of no smoothing ( a  = 1 ), (35) reduces 
to 

w ( t  + 1) = w, + P,[W( t ) ( l  - p.E(t)) 

- 4 t )  Z*(t,] (36) 

which is very similar to (30), and involves a reduction of 
w prior  to  projection.  This  same algorithm with fixed E 

was given recently by Takao and Kikuma [60], who noted 
that the step size parameter p should satisfy the following 
modified condition for convergence: 

o < / . , l <  2/3 
E[x*x] + M E ’  (37) 

Because R is unknown, a priori, it is difficult to set E to 
satisfy the constraint G,v z 6*. Kooij suggested adding a 
variable amount ~ ( t )  to  the diagonal of R given by the 
following equation: 

E(t + 1) = (1 - r )  E(t) 

+ A E  [ 1 + sign( A2 - G,(t))] (38) 

where AE and q are real positive  scalar constants with val- 
ues less than or equal to unity. The variable amount E ( t )  

increases when G, is too  small, and decreases when G, 
is sufficiently large.  Here AE is  the increment size, and 
( 1 - q ) is the relaxation parameter.  The maximum value 
of E is limited  to AE /q . This maximum value of E can be 
used in (37) in setting the  size of p.  

This algorithm treats G, using a penalty function ap- 
proach, and involves side computations for G,( t )  and 
E ( t ) .  It has been found to work well in applications. 

A .  Scaled Projection  Algorithm 

We now describe  the improved algorithm [61] which 
minimizes output power subject to both multiple linear 
equality constraints of the form given by (20), where the 
boresight constraint d*w = 1 is included in (20), and the 
quadratic inequality constraint 

(39) 

and where (20) and (39) are self-consistent. We wish to 
work with 62 directly and avoid using the intermediate 
parameter E .  

Writing w in terms of its orthogonal components and 
using the boresight unity response constraint of (21), (39) 
becomes 

1 
G, = 

w;w, + v*v 1 

where w,, given by (28), has the smallest norm while sat- 
isfying the linear  constraints. Using (29),  the constraint 
(40) may be written as 

U*U I - g*[C*C]-’ g = b2. (41 1 
Thus, the white noise gain constraint can be replaced by 
a constraint on v, the projection of w onto the null space 
of C*, where (41) defines b2 in terms of the other con- 
straint parameters. Since w, is given by (28)  independent 
of the data,  the adaptation may be carried out in the or- 
thogonal subspace to which v is restricted. 

Consider the situation depicted in  Fig.  4. Suppose that 
v ( t )  of Frost’s algorithm were on the boundary v* ( t )  
u( t )  = b2, and that the next iteration would place the 
tentative updated vector D ( t  + 1 ) outside of the boundary 
so that (41) would not be satisfied. We would like to mod- 
ify the algorithm to projeat the result of this iteration onto 
the constraint boundary, so that v( t + 1 ) would step along 
the boundary in the correct direction. Because  the con- 
straint region is  a closed sphere centered at  the  origin, 
D ( t  + 1 ) itself is normal to the constraint boundary sur- 
face, and the  projection of D ( t  + 1 ) onto the constraint 
boundary surface may be obtained by simply scaling a( t 
+ 1 ). This important observation leads to the following 
simple algorithm. 

Define a tentative update vector 

D(t + 1) = P , [ v ( t )  - pZ?(t) ~ ( t ) ]  (42) 

where R is given by (34).  Then,  update the weights by 



COX et al.: ROBUST ADAPTIVE BEAMFORMING 1371 

"2 

Fig. 4. Equivalence of gradient  projection and scaling of the  tentative  up- 
date  vector in  the null space  of C*. 

scaling 0, as required to satisfy (41). That is, 

( 0 ( t  + 1 )  for 101 I b2 2 

where wc, b,  and PC are given by (28),  (41), and (25), 
respectively. For  the  case of CY = 1 in (34), (42) reduces 
to 

@ ( t  + 1 )  = P c [ v ( t )  - I*.+) Z * ( t ) ] .  (44) 

The algorithm involves a projection of the tentative new 
weights onto  the orthogonal subspace, followed by a  scal- 
ing in that subspace, if necessary,  to satisfy the inequality 
constraint, and finally, the addition of component w, in 
the  other subspace. All constraints are satisfied exactly at 
each step. 

Not only is  the new algorithm extremely simple, but it 
achieves the  favorable properties [58] of gradient projec- 
tion algorithms for handling nonlinear constraints without 
incurring their disadvantages. By effectively projecting the 
result of the iteration rather than the  gradient, it achieves 
the same advantage that Frost's algorithm achieved over 
gradient projection algorithms for  linear constraints. 
Namely, roundoff errors do not accumulate. 

The algorithm has been implemented by combining the 
outputs of two beamformers, as shown in Fig. 5 .  One 
beamformer is fixed and uses w,* as fixed weights. When 
the constraints are  all chosen on  the beampattern of the 
conventional beamformer, w,* reduces to d * / M ,  the un- 
shaded conventional beamformer weights. The  other 

~ 

w,' 

z 
I' w 

v' 

/ 
WEIGHT 
UPDATE 

ALGORITHM 
4 

Fig. 5 .  Adaptive  beamformer  structure. 

beamformer is adaptive  and uses v ( t )  as its weights. The 
weights v ( t )  are sometimes called perturbation weights. 
This configuration has the  advantage of providing a con- 
ventional beamformer output as  a  byproduct.  This beam- 
forming structure was called a  generalized  sidelobe can- 
celler by Griffiths and Jim [62] because of its similarity 
to radar sidelobe cancellers [7], [8]. 

Recently, Jablon [63] discussed adding artificial noise 
in a generalized sidelobe canceller configuration to  obtain 
an algorithm similar to (36) with fixed E .  

Ahmed and Evans [64] have considered a different for- 
mulation of the robustness problem in which the con- 
straint matrix C* was perturbed by errors which were 
bounded in  absolute  value. An absolute  value constraint 
was applied to the amount which each linear constraint 
could be violated. They presented an algorithm based on 
techniques of mathematical programming. 

V. EXAMPLES 
The performance of the algorithm in  a weak signal sit- 

uation is illustrated in the simulations shown  in  Figs. 6- 
8. The  line array consists of eight elements spaced at s / h  
= 0.2 in a spherically isotropic  noise field. It is steered 
to endfire with a  single boresight constraint. The noise 
power a: is 0 dB and the signal power a: is - 10 dB.  The 
white noise gain constraint is set at unity (0 dB) based on 
the performance curves of Fig. 2 .  Fig. 6 presents the ar- 
ray gain as a  function of time.  The  step  size constant p 
for this simulation is 0.02, and  there  is no extra smooth- 
ing ( (Y = 1 ). The array gain increases to  a steady level 
of about 13 dB, less than 1 dB below the constrained op- 
timum for known covariance R .  

Fig. 7 presents the white noise gain as a function of 
time.  It shows a steady decrease  in  white noise gain until 
the constraint of 0 dB comes into  play.  The fluctuations 
in both G and G,, due to the finite step  size,  are  evident. 
The constraints are fully satisfied,at  each  time  step. 

Fig. 8 shows the beampattern of the weights at a snap- 
shot in time  at the 4000th time  step.  It may be compared 
to Fig. 3. The mainlobe is faithfully reproduced. In  the 
absence of strong interferers,  sidelobes  are not critical  to 
the optimization and  are not faithfully reproduced in  the 
adaptation. 

To illustrate signal suppression effects in a situation of 
a strong signal  and  array  imperfections,  consider  an  eight- 
element array whose elements  are nominally spaced uni- 
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Fig. 6. Array gain  as a function of time  for endfire example. 
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Fig. 7. White noise gain  versus  time  for endfire example. 
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Fig. 8. Adaptive  beampattern ( t  = 4000). 

formly at s/X = 0.3 in a spherically isotropic noise field. 
The actual element positions differ from the nominal ele- 
ment positions in  the broadside (x-axis)  direction,  as  in- 
dicated in Fig. 9. The actual element positions in the x- 
axis direction were chosen from a zero-mean Gaussian 
distribution with a standard deviation a, = 0.03X. The 
noise power is 0 dB, and the planewave arriving from 
broadside signal power a: is 0 dB.  The array is steered to 
broadside based on the nominal element positions. 

The performance of the  basic  Frost  algorithm, given by 
(30), with a single (boresight) constraint, is illustrated in 
the simulations shown in Figs. 10 and 11.  This algorithm 

;I 0 NOMINAL POSITIONS 

@-- @ ACTUAL POSITIONS 

f BROADSIDE 

@-Q 

Fig. 9. Imperfect array geometry 

Fig. 10. Broadside beam array gain  as a function of time.  The  Frost al- 
gorithm was used for  adaptation and does not include a white noise gain 
constraint. 

does not include the constraint on the white noise gain. 
Fig. 10 presents the array gain as a function of time.  The 
step size constant 1.1 for this simulation is 0.01, and there 
is no extra smoothing ( Q! = 1 ). The array gain rapidly 
decreases becoming less than unity. Performance is to- 
tally unsatisfactory. The mismatch between the nominal 
and actual element positions, coupled with a strong sig- 
nal, has resulted in substantial signal suppression and poor 
performance. Fig. 11 presents the corresponding white 
noise gain as  a function of time.  The nominal element 
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Fig. 1 1 .  White noise gain as a  function of time  resulting  from use of the 
Frost  algorithm. 
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Fig.  12. Broadside  beam array gain as a  function of time  using  the  new 
algorithm  with  white noise gain  constraint. 
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Fig. 13. White noise gain  as  a  function of time  using  the  new  algorithm. 

positions were used to  compute d in  the numerator of (7). 
It shows a steady decrease  in white noise gain, indicating 
the loss of robustness. 

The performance of the new robust algorithm given by 
(43) and (44) is illustrated in  the simulations shown in 
Figs. 12 and 13. The parameters for  this simulation are 
exactly the  same as for  the  Frost algorithm discussed 
above.  The white noise gain constraint is 4 .0   (6  dB).  The 

white noise gain  is  set higher in this example  since  there 
is no significant supergain potential at broadside. The set- 
ting is 3 dB below the maximum possible value of 9 dB. 
Fig. 12 presents  the array gain as  a function of time.  The 
array gain initially decreases  as  before,  due  to  the signal 
suppression caused by position mismatch, but soon the 
decrease is halted when the white noise  gain constraint 
comes into play at  about  the 100th time  step.  This can be 
seen in  Fig. 13, which presents the corresponding white 
noise gain. It shows an initial rapid decrease in white noise 
gain until the constraint of 6 dB is reached.  The white 
noise gain is maintained at  or  above  the constraint value 
at each time  step of the  simulation.  The effectiveness of 
the white noise gain constraint and  the  behavior of the 
constrained projection algorithm are clearly illustrated. 

VI. GENERALIZATION 
A more general problem arises when the constraint w*w 
I 6-* is replaced by a  quadratic inequality constraint of 
the following form: 

w*BB*w 5 y2 (45 1 
where B is M by M and  nonsingular so that BB* is positive 
definite. Consider  the problem 

Min w*Rw 

subject to the  quadratic constraint (45) and  the  linear con- 
straints (20). Simple scaling as in (43) no longer has the 
projection property and would, in general,  converge  to  a 
nonoptimum solution.  This problem is similar  to  one dis- 
cussed by Owsley [65]. The matrix BB* may be used,  for 
example,  to represent correlated errors as in ( X ) ,  isotropic 
noise for directivity control, or regions of controlled side- 
lobe response. Recently, Er and  Cantoni [66] discussed 
the use of a  quadratic constraint to  control mainlobe re- 
sponse. 

The scaled projection algorithm can  be applied to  the 
above problem by introducing a transformation such that 
the quadratic constraint boundary is spherical in  the new 
coordinate space. 

Let 

y. = B-'x (46) 

and 

u .= B*w (47) 
so that 

E [ y y * ]  = B-'RB*-I = RY (48) 
w*x = u*y = z (49) 

and 
w*Rw = u*R,,u. t 50) 

Then the problem is transformed into  the  proper form for 
the application of the scaled projection algorithm. That 
is, 

Min u*RYu 
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Fig.  14. Adaptive beamformer  structure  for a general  quadratic  constraint. 

subject to 

u*u I y (51) 
F*u = g (52 1 

( 5 3  1 

2 

where 
F* = C*B*-‘.  

The solution can be expressed in the form 

u ( t )  = Uf + h ( t )  

where in analogy with (28) 

uf = F [ F * F ]  -‘g. 

Let 

P2 = y2 - g * [ F * F ]  -’g. 

Defining the projection matrix pf in analogy 
follows: 

pf = I - F[F*F]   - IF*,  

the scaled projection algorithm becomes 

This algorithm may be implemented by a beamformer with 
the structure shown in Fig. 14. This structure is similar 
to the one of Fig. 5 ,  but involves an initial transformation 
B-‘ to obtain y from the input x. 

VII. CONCLUSIONS 
An improved adaptive beamforming algorithm has been 

presented which permits simultaneous linear equality con- 
straints and a quadratic inequality constraint on the gain 
against spatially white noise. The algorithm involves a 
simple scaling of the weights in a  subspace, if necessary, 
to satisfy the inequality constraint. Hence, we call it the 
scaled projection algorithm.  The scaling is equivalent to 
projecting the tentative updated weights onto the bound- 
ary of the quadratic constraint surface.  This projection 
property stems from the  fact that the white noise gain con- 
straint can be expressed as  a sphere centered at the origin 

in the subspace which is orthogonal to the  linear con- 
straints. 

Its performance has been illustrated in two examples. 
This performance is typical of what has been observed in 
extensive simulations.  The algorithm is simple,  reliable, 
and leads to systems which are robust in the face of the 
inevitable finite tolerances of physical systems. 

The algorithm has been generalized to handle a more 
general quadratic constraint by introducing a  linear trans- 
formation to convert the general quadratic constraint to a 
spherical constraint. 
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