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Robust Adaptive Beamforming

HENRY COX, reLLow, IEEE, ROBERT M. ZESKIND, SENIOR MEMBER,. IEEE, AND
MARK M. OWEN, MEMBER, IEEE

Abstract—Adaptive beamforming algorithms can be extremely sen-
sitive to slight errors in array characteristics. Errors which are uncor-
related from sensor to sensor pass through the beamformer like un-
correlated or spatially white noise. Hence, gain against white noise is
a measure of robustness. A new algorithm is presented which includes
a quadratic inequality constraint on the array gain against uncorre-
lated noise, while minimizing output power subject to multiple linear
equality constraints. It is shown that a simple scaling of the projection
of tentative weights, in the subspace orthogonal to the linear con-
straints, can be used to satisfy the quadratic inequality constraint.
Moreover, this scaling is equivalent to a projection onto the quadratic
constraint boundary so that the usual favorable properties of projec-
tion algorithms apply. This leads to a simple, effective, robust adaptive
beamforming algorithm in which all constraints are satisfied exactly at
each step and roundoff errors do not accumulate. The algorithm is
then extended to the case of a more general quadratic constraint.

I. INTRODUCTION

HE purpose of this paper is to present an improved

recursive algorithm for adaptive beamforming which
includes both multiple linear equality constraints and a
quadratic inequality constraint. The quadratic inequality
constraint may be used to ensure that the beamformer is
robust, not highly sensitive to small amplitude, phase, or
position errors. It limits signal suppression effects and
limits the growth of the adaptive weights which is impor-
tant in digital implementations. Thus, it controls sensitiv-
ity to tolerance errors. The significant new feature of the
algorithm is the way in which this inequality constraint is
implemented so that all constraints are satisfied exactly at
each time step and roundoff errors do not accumulate. We
call the new algorithm the ‘‘scaled projection algorithm’’
since it involves projection of the tentative weight updates
onto the subspace which is orthogonal to the linear con-
straints followed by a scaling in that subspace, if neces-
sary, to satisfy the quadratic inequality constraint.

The potential for using adaptive beamforming to im-
prove the performance of sensor arrays was recognized in
the early 1960°s in the fields of sonar [1]-[6], radar [7]-
[10], and seismic [11]-[16] signal processing. It soon be-
came apparent that a variety of formulations of optimum
detection and estimation problems gave rise to the same
spatial processor [17]-[22]. The basic concept is to use
measured background spatial correlation characteristics to
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reject noise and interference [23]-[27], thereby improv-
ing beam output signal-to-noise ratio. In order for the pro-
cessor to reject noise without rejecting signal, it is nec-
essary to make some assumptions about the signal
characteristics. The problem of mismatch arises when the
true signal characteristics differ from the assumed ones.
A robust processor should be relatively insensitive to small
errors in the assumed signal characteristics.

Many important sources of error which occur in phys-
ical systems are approximately uncorrelated from sensor
to sensor and degrade system performance in a way which
is similar to adding a corresponding amount of uncorre-
lated or spatially white noise to each sensor. Thus, the
array gain against spatially white noise (‘‘white noise
gain’’) is a measure of robustness and its reciprocal is a
measure of sensitivity to tolerance errors. A very similar
problem had arisen much earlier in the context of super-
directive transmitting arrays. Indeed, in the mid-1950’s,
Gilbert and Morgan [28] and Uzsoky and Solymar [29]
specifically included a robustness constraint when maxi-
mizing the geometric gain of transmitting arrays. Geo-
metric gain in a transmitting array is mathematically
equivalent to array gain against spherically isotropic noise
(directivity) in a receiving array.

The use of recursive algorithms for adaptive beamform-
ing also dates back to the 1960°s. Important early contri-
butions were made by Shor [5], Widrow [30], Griffiths
[32], and Lacoss [31]. Multiple linear constraints are used
in adaptive beamforming to ensure unity response to a unit
signal from the boresight signal direction, to control
mainlobe shape, and to place beampattern nulls in se--
lected directions. They were introduced by Booker and
Ong [33] and were included by Frost [34] in his well-
known adaptive beamforming algorithm. Kooij, in his
doctoral thesis [35], used a penalty function approach in
conjunction with Frost’s algorithm in order to control the
white noise gain in a recursive adaptive beamformer. The
new scaled projection algorithm uses Frost’s approach for
handling the multiple linear equality constraints and in-
cludes a novel approach to handling the quadratic in-
equality constraint. '

For a given problem, there is usually a close relation-
ship between the optimum beamformer based on known
covariances, and an adaptive beamformer which adjusts
its parameters based on the input data without prior as-
sumptions concerning the noise covariance structure. In a
stationary situation, the steady-state performance of a

~ good adaptive beamformer should be close to that of the
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optimum beamformer for the same problem, Also, the
structure of an adaptive beamformer is frequently based
on that of the corresponding optimum beamformer, Tech-
niques for adaptive beamforming fall into two basic cat-
egories: ‘‘estimate and plug,”’ and recursive algorithms.
The estimate and plug procedure simply uses estimates in
the place of known covariances in the optimum beam-
former structure. Recursive algorithins for adaptive
beamforming use a stochastic gradient or steepest descent
- approach to obtain weights in a manner similar to which
a nonstochastic gradient algorithm can be used to obtain
weights for the optimum beamformer with known covari-
ance structure. Therefore, it is helpful to review results
for optimum beamformers in order to establish the basis
of the improved adaptive beamforming algorithm,

Stochastic algorithms [36], more sophisticated than
steepest descent, may be used analogous to their use in
deterministic optimization problems, but their considera-
tion is beyond the scope of this paper. A number of au-
thors [37]-[49] have discussed various aspects of the ef-
fects of errors on adaptive beamforming.

II. NOTATION

The general structure of the problem of interest is shown
in the block diagram of Fig. 1. For simplicity, an elément
level frequency domain formulation of the problem will
be used. The relationship to other formulations is dis-
cussed by Vural [50].

“The array of interest consists of M sensors of known
but arbitrary geometry. The complex narrow-band output
of the mth sensor in a particular frequency bin is x,,(¢).
The senser outputs can be aggregated into a column vec-
tor x(t). The cross-spectral density matrix of the vector
of sensor outputs multiplied by the bin width is

R = E(xx*) (1)

where E denotes expectation and the asterisk denotes
complex conjugate transposition, so that x* is the row
vector (x§, x5, + * - , xjy). The complex scalar output of
the beamformer at time ¢ is z(¢). It is obtained from a
weighted sum of the inputs. The complex weight applied
to the mth sensor output is w}, and w* is the row vector of
weights (w§, w¥, - -+, wi}). Thus,

(2)

The poWer output spectral density mult1plled by the bin

‘width is
E(|z[) = o2 (3

When a planewave signal of strength o2 from direction 8
impinges on the array, R will include a term of the form
o2d(8) d* (), where d*(6) is a row vector of phase de-
lays to align the sensor outputs for a signal from direction
6 for the specific array geometry under consideration. That

is, .
, EXp (I(%) s(6) - pm), e ] (4)

sioy =

z = w¥x,

WwERw =
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Fig. 1. General beamformer structure,

where s(0) is a unit vector in the direction of propaga-
tion, and p,, is the vector of coordinates of the mth sensor.
It is sometimes useful to decompose R into signal and
noise components, as follows:

= o2dd* + o2 Q. (5)

The noise cross-spectral matrix Q is normalized to have
its trace equal to the number of sensors M so that 2 /o2
is the input signal-to-noise spectral ratio averaged across
the M sensors.

The array gain G is the 1mpr0vement in signal-to-noise

" ratio due to beamforming, that is,

_ [wal’
= o (6)

The numerator of (6) is called the signal response, and
the denominator is called the noise response. Several spe-
cial cases of the noise cross-spectral matrix Q are of in-
terest. When the noise is spatially white or uncorrelated
from sensor to sensor, { becomes the identity matrix J
and the array gain becomes what is called the ‘‘white noise
gain,”’ that is,

|wed|*

G, = o = M.

(7)

The sensitivity of array gain to signal mismatch can be
examined by considering the signal to be perturbed by
small zero mean random errors with normalized covari-
ance mattix 4, so that the expected signal cross-spectral
matrix becomcs o2[dd* + £A] where £ is a strength pa-
rameter {41]. The fractional sensitivity S of array gain to
these random errors is

P (dGéd&) _

wiAw _ _1_
lwed | Gu’

The fractional sensitivity is equal to the reciprocal of the
array gain against noise with the covariance A of the ran-
dom errors. When the errors are uncorrelated, the sensi-
tivity is equal to the reciprocal of the white noise gain (S,
= G 1). 8, is a classic measure of sensitivity to tolerance
errors [28], [291, [40], {41]. The white noise gain is a
useful and convenient measure of robustness.

When the noise is spherically isotropic, the noise ma-
trix will be denoted by (), to emphasize its dependence
on array geometry, The corresponding array gain ob-
tained by using @, in (6) is called the geometric gain or
directivity

(8)

[wea [

G, =
£ owrQw

(9)
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The Q-factor or supergain ratio [10], [29], [51] is an
alternative measure of sensitivity to errors which arises
naturally in the theory of superdirective arrays. It is de-
fined as the ratio of geometric gain to white noise gain,
that is,

G, _ whw

G, B w*Q,w (10)

The quantity p = G/G,, has been called the generalized
supergain ratio [41] since it generalizes the supergain ra-
tio to an arbitrary noise matrix. It arises in analyses of the
effects of noise perturbations on beamformers with fixed
weights.

III. OPTIMIZATION
In this section, the relationships among a number of
optimization problems are discussed. This provides the
foundation for later discussions of recursive adaptive. al-
gorithms as well as providing historical perspective.

A. Unconstrained Array Gain

The beamformer, which maximizes the improvement in
signal-to-noise ratio or array gain, is optimum for a va-
riety of detection and estimation problems [17]-[21]. The
problem is formulated as follows:

Max ]w*d Iz.
W w*Qw
The well-known solution is
w=aQ 'd (11)

where is an arbitrary complex constant. Choosing o
to produce unity signal response with zero phase shift so
that w*d = 1 yields

44 *9

o'

W=m.

(12)

This form of the weight vector was used in early seis-
mic work [12], [15], where noise estimates were obtained
before and after the signal arrival. The resulting array gain
is

G = d*Qd. (13)

The expression for G may be written in terms of the
eigenvalues A; and eigenvectors ¢; of O as

(14)

The optimization is seen to emphasize projections of the
direction vector d onto eigenvectors associated with small
eigenvalues. When model imperfections exist, difficulties
arise if too much reliance is placed on very small projec-
tions of the signal.

White noise gain is maximized by the conventional
beamformer w = d /M, for which G, = M, and the array
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gain is
M2

G=d*Qd'

(15)

B. Single Boresight Look Direction Constraint

A practical difficulty with unconstrained array gain op-
timization is that the signal and noise powers and the noise
cross-spectral matrix Q are not known. In many applica-
tions, what is measurable is the signal-plus-noise matrix
R. An important suggestion by Levin and others [13],
[14], [21] was to minimize the total output power, which
is directly measurable, subject to a constraint of unity un-
distorted signal response from the des1red look direction.
That is,

N{vin WERw subject to w*d = 1.

This problem may be seen to be mathematically equiva-
lent to the unconstrained array gain optimization problem
since (w*Rw) is a linear combination of the numerator
and denominator of (6), and the numerator has been con-
strained. The solution is
-1
- R4 (16)
d*R™'d

When R is given by (5), the equivalence of (16) and (12)
may be shown using matrix identities [43]. The inclusion
of the signal in R leads to signal suppression in the face
of tolerance errors, or mismatch between the true and as-
sumed signal spatial characteristics. This effect was ana-
lyzed in detail in [43].

C. White Noise Guain or Robustness Constraint

This generalization to an arbitrary noise cross-spectral
matrix @ of the problem addressed by Gilbert and Morgan
[28] was applied to adaptive beamforming by Cox [41].
The problem is to maximize array gain subject to an
equality constraint on the white noise gain, that is,

Max G subjectto G, = 8* < M

The constraining value 6% must be chosen less than or
equal to the maximum possible white noise gain M for the
problem to be self-consistent.

Equivalently, one can minimize (( 1 /G) +e(1/G, ))
where € is a Lagrange multiplier. This leads to

Min i sz i w2 = Min e ew (© 62)W
P Twral " e [wed]

The solutioﬁ, which is normalized for unity response to a

unit boresight signal, in analogy to (12), is :

_(o+ed)'d

d*(Q + el) 'd

where ¢ is adjusted to satisfy the white noise gain con-
straint. It is seen to involve adding e to the diagonal ele-
ments of Q which adds € to each eigenvalue without mod-

(17)

(18)
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ifying the eigenvectors. The old ad hoc technique of -

adding a small amount to each diagonal element prior to
matrix inversion is actually the optimum procedure for
this problem. The Lagrange multiplier ¢ provides a con-
tinuous monotonic parameterization between the uncon-
strained optimum (e = 0) and the conventional (e = o)
beamformers. Unfortunately, the relationship between e
and the constraint value 7 is not simple.

For example, consider an eight-element uniformly
spaced line array in spherically isotropic noise. Fig. 2,
due to Kooij [35], presents curves of array gain versus
white noise gain for element spacings of 0.1, 0.2, 0.3,
0.4, and 0.5 wavelengths when the signal direction is
endfire. The parameter ¢ varies from 0 to o along the
curves. For closely spaced elements, unconstrained
beamforming is seen to result in extremely low values of
white noise gain. This is a classical supergain situation.
Curves such as those of Fig. 2 may be used to trade off
array gain for robustness in setting the value of the white
noise gain constraint. If we consider the spacing s/\ =
0.2, and constrain the white noise gain to be unity (0 dB),
it is possible to achieve 13.4 dB of array gain with an 8-
element array which is only 1.4 wavelengths long. The
resulting beampattern is given in Fig. 3. The performance
of the improved adaptive algorithm for this example will
be presented later. Additional curves of the type given in
Fig. 2, together with a discussion of the practicality of
achieving high gain with short endfire arrays, are pre-
sented in [52].

The problem of maximizing array gain subject to an
equality constraint on white noise gain involves three
quadratic forms:

|w*d|2, w*Qw, and whw.

Since the quantities output power, array gain, white noise
gain, and generalized supergain ratio each involve two of
these quadratic forms, there exists a number of equivalent
formulations of the optimization problem. Specifically,
the following interesting problems are equivalent.

Problem A: Maximize array gain, constrain white noise
gain, and signal response [41]

[wd |* - |wed |
Max w 0w’ -

2 —
—— 6%, wtd =1,

Problem B: Maximize array gain, constrain norm of w,
and signal response
2
| wd |
Max — ,
v wEQw
Problem C: Minimize output power, constrain white
noise gain, and signal response [35]

wrd | _

whw

wiw = 672, w¥d = 1.

N{vin w*Rw, 82, wrd = 1.

Problem D: Minimize output power, constrain norm of
w, and signal response [53]

N{vinv W Rw, wiw = 672, w*d = 1.
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Fig. 3. Constrained optimum beampattern.

In analogy with (12) and (16), an equivalent to (18)
which does not require knowledge of the noise matrix Q,
and is a solution to Problems A-D, is

(R +el] 'd

S Ridl'd (19)

D. Constraint on 'Supergain Ratio

Uzsoky and Solymdr [29] considered the problem of
maximizing geometric gain subject to a constraint on the
supergain ratio, that is,

[wed |
Max

wHw
= q.
o owkQw’

wEQ,w

They showed that this is equivalent to the problem of Gil-
bert and Morgan who constrained white noise gain. Again,
only three quadratic forms are involved. By analogy, there
are equivalents to Problems A-D which constrain the gen-
eralized supergain ratio.

Lo, Lee, and Lee [10], following the lead of Uzsoky
and Solymdr, considered the problem of maximizing ar-
ray gain with a constraint on the supergain ratio. That is,

2
I wid l wiEw

Max = a.
v owkQw ' wrQ.w
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This problem involves four quadratic forms and is signif-
icantly more complicated than constraining white noise
gain to ensure robustness. There is no apparent reward for
the increased complication. '

E. Multiple Linear Constraints

Multiple linear constraints are a generalization of the
single boresight constraint [31]. They were introduced by
Booker and Ong [33] and included by Frost [34] in his
~well-known recursive adaptive beamforming algorithm.
This problem is formulated as one of minimizing the out-
put power subject to multiple linear equality constraints,
that is,

’ l\/gn w*Rw
subject to

C*w = g. (20)

The matrix C* is assumed to have K(K < M) linearly
independent rows, one for each constraint, so-that C* is
a K X M matrix. One row of C* is usually d*, and the
corresponding element of g is 1, so that the unit boresight
response constraint

d*w = 1 (21)

is usually included in (20). This important constraint per-
mits the combination of various frequency bins at the
beamformer output without amplitude and phase distor-
tion. Other linear constraints may include multiple point
constraints on the mainlobe [50], [54], or derivative con-
straints [50], [53], [55], [56] to control mainlobe shape,
or null constraints [57] to reduce response in specific di-
rections or to strongly control mainlobe width.

The problem may be solved by using a Lagrange mul-
tiplier to adjoin the constraints to the objective function.
The solution is

w=RIC[C*R"'C] . (22)

It is useful to consider this problem in terms of the com-
plementary orthogonal linear subspaces associated with
the constraint matrix C. The weight vector w may be de-
composed into two orthogonal components:

w=w,+ v (23)
where w, is made up of a linear combination of the col-
umns of C (w, is the projection of w onto the range of
C), and v is orthogonal to the rows of C* (v is the pro-
jection of w onto the null space of C*). The respective
projection matrices are:

P, = C[C*Cj_IC* (range of C) (24)
and '
B, =1- P, (null space of C*) (25)
so that
w, = P.w (26)
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and

v=>"Pw. (27)

Projecting the optimum solution for w of (22) onto the
range of C yields

we = C[c*C] g (28)

which does not depend on R. The matrix C[C*C ] ~! may
be recognized as the generalized inverse of C*. Thus, (28)
gives the minimum norm solution of the constraint equa-
tion (20). It is also useful to note from (28) that

wiw, = g*[C*C]—lg. (29)

Since w, is independent of R, an equivalent optimization
may be carried out in the subspace which is orthogonal to
C*. '

F. Implementation Considerations

Since the K rows of C* are assumed to be linearly in-
dependent, it is always possible to transform the con-
straint equation (20) such that the rows of C* are orthog-
onal and C*C = [. This simplifies (24), (28), and (29).

For line arrays of sensors, significant simplifications of
mainlobe constraints can be accomplished if the outputs
of the individual sensors are first delayed or phased to
align signals from the boresight direction of each beam of
interest. Then, multiple point constraints at correspond-
ing positions (e.g., boresight, 3 dB down points) of dif-
ferent beams may be represented by a single constraint

-matrix C*, which does not depend on frequency. Mote-

over, when the constraints are chosen symmetrically on
the mainlobe, they occur in complex conjugate pairs and
may be transformed into a pair of real constraints. Thus,
the constraint matrix C* can be reduced to a single real
matrix which applies across beams and frequencies. Sig- -
nificant memory and computation savings result.

IV. ADAPTATION

Frost [34] presented an adaptive algorithm for mini-
mizing output power subject to multiple linear equality
constraints. In the notation of this paper, his algorithm is

w(t+ 1) = w, + P[w(r) — px(2) 2()] (30).

where p is a small, positive, step-size parameter which
controls the rate-of-change of w. The algorithm is closely
related to deterministic gradient projection. Since [x(t)
x*(¢)] is an instantaneous estimate of R, the quantity

x(1) (1) = [x() x* ()] w(2) (31)

is an instantaneous estimate of the generalized gradient
Rw of the output power o2, with respect to the weights.
Frost’s algorithm is an improvement over the gradient
projection algorithms of Lacoss [31] (single boresight
constraint) and Booker and Ong [33] (multiple linear con-
straints) which had the form

w(t + 1) = w(t) — pz*(t) Bx(s).  (32)

Because gradient projection algorithms are known to wan-



1370

der off the constraints due to roundoff error, Frost pro-
jected the updated solution onto the null space of C* at
each step, and then added the component w,, which does
not depend on the input statistics.

The effect of the size of the parameter u on the perfor-
mance of recursive algorithms is discussed by Griffiths
[32] and Frost [34]. A sufficient condition for bounded
steady state ‘‘misadjustment’’ is

0<pu< (33)

2
3E(x*x)
To ensure that (33) is satisfied, it is common practice to
adapt u based on an estimate of input power.

The first explicit consideration of a robustness con-
straint in a recursive adaptive beamforming algorithm was
apparently by Winkler and Schwartz [58]. They applied a
gradient projection algorithm to the problem of Lo, Lee,
and Lee of maximizing array gain subject to a constraint
on the supergain ratio. That formulation did not lead to a
simple algorithm. They later applied a penalty function
with gradient projection to the same problem [59].

Kooij [35] investigated several algorithms which in-
cluded a consideration of white noise gain directly in the
algorithm. In particular, for a smoothed estimate of R of
the form

R(t) = (1 = a) R(t = 1) + ax(s) x* (1), (34)

where « is a smoothing parameter (0 < o =< 1), Kooij,
motivated by (19), gave the following weight update
~equation:

w(t+ 1) = w. + Pw()

R + eI W], (35)

In the special case of no smoothing (o = 1), (35) reduces
to

w(t + 1) = w, + P[w(r)(1 — pe(1))
—px(1) 2%(1)] (36)

which is very similar to (30), and involves a reduction of
w prior to projection. This same algorithm with fixed e
was given recently by Takao and Kikuma [60], who noted
that the step size parameter p should satisfy the following
modified condition for convergence:

2/3

0< < o7 .
# E[x*x] + Me

(37)

Because R is unknown, a priori, it is difficult to set € to
satisfy the constraint G,, = 6. Kooij suggested adding a
variable amount e(¢) to the diagonal of R given by the
following equation:

e(t+1)=(1—-1n)e(
+ Ae[1 + sign(8® — G.(1))] (38)

where Ae and 7 are real positive scalar constants with val-
ues less than or equal to unity. The variable amount € (z)
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increases when G, is too small, and decreases when G,,
is sufficiently large. Here Ae is the increment size, and
(1 — ) is the relaxation parameter. The maximum value
of ¢ is limited to Ae/y. This maximum value of e can be
used in (37) in setting the size of u.

This algorithm treats G,, using a penalty function ap-
proach, and involves side computations for G, (¢) and
e(t). 1t has been found to work well in applications.

A. Scaled Projection Algorithm

We now describe the improved algorithm [61] which
minimizes output power subject to both multiple linear
equality constraints of the form given by (20), where the
boresight constraint d*w = 1 is included in (20), and the
quadratic inequality constraint

_ v

Gw - 52 (39)

wEw
and where (20) and (39) are self-consistent. We wish to
work with 6% directly and avoid using the intermediate
parameter €.

Writing w in terms of its orthogonal components and
using the boresight unity response constraint of (21), (39)
becomes

1 5

G, = —4———=
Y owrw, + vt

(40)
where w,, given by (28), has the smallest norm while sat-
isfying the linear constraints. Using (29), the constraint
(40) may be written as

viy < 877 — g”‘[C*C]—1 g = b (41)
Thus, the white noise gain constraint can be replaced by
a constraint on v, the projection of w onto the null space
of C*, where (41) defines b* in terms of the other con-
straint parameters. Since w, is given by (28) independent
of the data, the adaptation may be carried out in the or-
thogonal subspace to which v is restricted.

Consider the situation depicted in Fig. 4. Suppose that
v(t) of Frost’s algorithm were on the boundary v*(r)
v(t) = b?, and that the next iteration would place the
tentative updated vector #(¢ + 1) outside of the boundary
so that (41) would not be satisfied. We would like to mod-
ify the algorithm to project the result of this iteration onto
the constraint boundary, so that v (¢ + 1) would step along
the boundary in the correct direction. Because the con-
straint region is a closed sphere centered at the origin,
(t + 1) itself is normal to the constraint boundary sur-
face, and the projection of O(t + 1) onto the constraint
boundary surface may be obtained by simply scaling © (¢
+ 1). This important observation leads to the following
simple algorithm. '

Define a tentative update vector

o( + 1) = PJu(r) = pR(2) w(1)]

where R is given by (34). Then, updéte the weights by

(42)
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Fig. 4. Equivalence of gradient projection and scaling of the tentative up-
date vector in the null space of C*.

scaling &, as required to satisfy (41). That is,

o(t+1) for|o]' <b?
= bo(t + (43)
w(it+ 1) =w, + o(r+ 1) f0r|ﬁ|2>b2
|o(e + 1)

where w,, b, and P, are given by (28), (41), and (25),
respectively. For the case of @ = 1 in (34), (42) reduces
to

o(t + 1) = B.lo(t) — ux(t) z%(1)]. (44)

The algorithm involves a projection of the tentative new
weights onto the orthogonal subspace, followed by a scal-
ing in that subspace, if necessary, to satisfy the inequality
constraint, and finally, the addition of component w, in
the other subspace. All constraints are satisfied exactly at
each step.

Not only is the new algorithm extremely simple, but it
achieves the favorable properties [58] of gradient projec-
tion algorithms for handling nonlinear constraints without
incurring their disadvantages. By effectively projecting the
result of the iteration rather than the gradient, it achieves
the same advantage that Frost’s algorithm achieved over
gradient projection algorithms for linear constraints.
Namely, roundoff errors do not accumulate.

The algorithm has been implemented by combining the
outputs of two beamformers, as shown in Fig. 5. One
beamformer is fixed and uses w* as fixed weights. When
the constraints are all chosen on the beampattern of the
conventional beamformer, w* reduces to d* /M, the un-
shaded conventional beamformer weights. The other
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Fig. 5. Adaptive beamformer structure.

beamformer is adaptive and uses v (¢) as its weights. The
weights v(7) are sometimes called perturbation weights.
This configuration has the advantage of providing a con-
ventional beamformer output as a byproduct. This beam-
forming structure was called a generalized sidelobe can-
celler by Griffiths and Jim [62] because of its similarity
to radar sidelobe cancellers [7], [8].

Recently, Jablon [63] discussed adding artificial noise
in a generalized sidelobe canceller configuration to obtain
an algorithm similar to (36) with fixed e.

Ahmed and Evans [64] have considered a different for-
mulation of the robustness problem in which the con-
straint matrix C* was perturbed by errors which were
bounded in absolute value. An absolute value constraint
was applied to the amount which each linear constraint
could be violated. They presented an algorithm based on
techniques of mathematical programming.

V. EXAMPLES

The performance of the algorithm in a weak signal sit-
uation is illustrated in the simulations shown in Figs. 6-

8. The line array consists of eight elements spaced at s /A

= (.2 in a spherically isotropic noise field. It is steered
to endfire with a single boresight constraint. The noise
power o2 is 0 dB and the signal power o2 is —10 dB. The
white noise gain constraint is set at unity (0 dB) based on
the performance curves of Fig. 2. Fig. 6 presents the ar-
ray gain as a function of time. The step size constant u
for this- simulation is 0.02, and there is no extra smooth-
ing (@ = 1). The array gain increases to a steady level
of about 13 dB, less than 1 dB below the constrained op-
timum for known covariance R.

Fig. 7 presents the white noise gain as a function of
time. It shows a steady decrease in white noise gain until
the constraint of 0 dB comes into play. The fluctuations
in both G and G,,, due to the finite step size, are evident.
The constraints are fully satisfied at each time step.

Fig. 8 shows the beampattern of the weights at a snap-

. shot in time at the 4000th time step. It may be compared

to Fig. 3. The mainlobe is faithfully reproduced. In the
absence of strong interferers, sidelobes are not critical to
the optimization and are not faithfully reproduced in the
adaptation.

To illustrate signal suppression effects in a situation of
a strong signal and array imperfections, consider an eight-
element array whose elements are nominally spaced uni-
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Fig. 6. Array gain as a function of time for endfire example.
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Fig. 7. White noise gain versus time for endfire example.
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Fig. 8. Adaptive beampattern (¢ = 4000).

formly at s /A = 0.3 in a spherically isotropic noise field.
The actual element positions differ from the nominal ele-
ment positions in the broadside (x-axis) direction, as in-
dicated in Fig. 9. The actual element positions in the x-
axis direction were chosen from a zero-mean Gaussian
distribution with a standard deviation g, = 0.03A. The
noise power o, is 0 dB, and the planewave arriving from
broadside signal power o2 is 0.dB. The array is steered to
broadside based on the nominal element positions.

The performance of the basic Frost algorithm, given by
(30), with a single (boresight) constraint, is illustrated in
the simulations shown in Figs. 10 and 11. This algorithm
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Fig. 9. Imperfect array geometry.
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Fig. 10. Broadside beam array gain as a function of time. The Frost al-
gorithm was used for adaptation and does not include a white noise gain
constraint.

does not include the constraint on the white noise gain.
Fig. 10 presents the array gain as a function of time. The
step size constant g for this simulation is 0.01, and there
is no extra smoothing (a« = 1). The array gain rapidly
decreases becoming less than unity. Performance is to-
tally unsatisfactory. The mismatch between the nominal
and actual element positions, coupled with a strong sig-
nal, has resulted in substantial signal suppression and poor
performance. Fig. 11 presents the corresponding white
noise gain as a function of time. The nominal element
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Fig. 11. White noise gain as a function of time resulting from use of the
Frost algorithm.
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Fig. 13. White noise gain as a function of time using the new algorithm.

positions were used to compute d in the numerator of (7).
It shows a steady decrease in white noise gain, indicating
the loss of robustness.

The performance of the new robust algorithm given by
(43) and (44) is illustrated in the simulations shown in
Figs. 12 and 13. The parameters for this simulation are
exactly the same as for the Frost algorithm discussed
above. The white noise gain constraint is 4.0 (6 dB). The
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white noise gain is set higher in this example since there
is no significant supergain potential at broadside. The set-
ting is 3 dB below the maximum possible value of 9 dB.
Fig. 12 presents the array gain as a function of time. The
array gain initially decreases as before, due to the signal
suppression caused by position mismatch, but soon the
decrease is halted when the white noise gain constraint
comes into play at about the 100th time step. This can be
seen in Fig. 13, which presents the corresponding white
noise gain. It shows an initial rapid decrease in white noise
gain until the constraint of 6 dB is reached. The white
noise gain is maintained at or above the constraint value
at each time step of the simulation. The effectiveness of

.the white noise gain constraint and the behavior of the

constrained projection algorithm are clearly illustrated.

VI. ‘GENERALIZATION

A more general problem arises when the constraint w*w
< &7? is replaced by a quadratic 1nequa11ty constraint of
the following form:

w*BB*w < 2 (45)

where B is M by M and nonsingular so that BB* is positive
definite. Consider the problem

N{vin w¥*Rw

subject to the quadratic constraint (45) and the linear con-
straints (20). Simple scaling as in (43) no longer has the
projection property and would, in general, converge to a
nonoptimum solution. This problem is similar to one dis-
cussed by Owsley [65]. The matrix BB* may be used, for
example, to represent correlated errors as in (8), isotropic
noise for directivity control, or regions of controlled side-
lobe response. Recently, Er and Cantoni [66] discussed
the use of a quadratic constraint to control mainlobe re-
sponse.

The scaled projection algorithm can be applied to the
above problem by introducing a transformation such that
the quadratic constraint boundary is spherical in the new
coordinate space.

Let
y.= B 'x (46)
and
u-= B*w (47)
so that
E[yy*] = B'RB* ' =R, (48)
wkx = u*y = (49)
and
W*Rw = u*R,u. (50)

Then the problem is transformed into the proper form for
the application of the scaled projection algorithm. That
is, '
Min u*Ryu
u
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Fig. 14. Adaptive beamformer structure for a general quadratic constraint.

subject to
uru < y* (51)
Fry = g (52)
where
F* = C*B*!, (53)
The solution can be expressed in the form
u(t) = u; + h(t) (54)
where in analogy with (28)
u = F[F*F] 'g. (55)
Let ‘
8 =+ - g [F*F] . (56)

Deﬁhing the projection matrix Ff in analogy with (25) as
follows:

P, = I — F[F*F] 'F*, (57)
the scaled projection algorithm becomes ‘
h(t + 1) = Prlh(1) — py(1) 2%(1)] (58)
(ﬁ(l+ 1) forlfz[zsﬁz
h(r+ 1) = thi—ll for ]lez > B2 (59)
|R(e + 1)

This algorithm may be implemented by a beamformer with
the structure shown in Fig. 14. This structure is similar
to the one of Fig. 5, but involves an initial transformation
B! to obtain y from the input x.

VII. CONCLUSIONS

An improved adaptive beamforming algorithm has been
presented which permits simultaneous linear equality con-
straints and a quadratic inequality constraint on the gain
against spatially white noise. The algorithm involves a
simple scaling of the weights in a subspace, if necessary,
to satisfy the inequality constraint. Hence, we call it the
scaled projection algorithm. The scaling is equivalent to
projecting the tentative updated weights onto the bound-
ary of the quadratic constraint surface. This projection
property stems from the fact that the white noise gain con-
straint can be expressed as a sphere centered at the origin
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in the subspace which is orthogonal to the linear con-
straints.

Its performance has been illustrated in two examples.
This performance is typical of what has been observed in
extensive simulations. The algorithm is simple, reliable,
and leads to systems which are robust in the face of the
inevitable finite tolerances of physical systems.

The algorithm has been generalized to handle a more
general quadratic constraint by introducing a linear trans-
formation to convert the general quadratic constraint to a
spherical constraint. '
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